Cargando…
Machine Learning Methods to Identify Missed Cases of Bladder Cancer in Population-Based Registries
PURPOSE: Population-based cancer incidence rates of bladder cancer may be underestimated. Accurate estimates are needed for understanding the burden of bladder cancer in the United States. We developed and evaluated the feasibility of a machine learning–based classifier to identify bladder cancer ca...
Autores principales: | Noone, Anne-Michelle, Lam, Clara J. K., Smith, Angela B., Nielsen, Matthew E., Boyd, Eric, Mariotto, Angela B., Banerjee, Mousumi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462616/ https://www.ncbi.nlm.nih.gov/pubmed/34097440 http://dx.doi.org/10.1200/CCI.20.00170 |
Ejemplares similares
-
Regional differences in tobacco smoking and lung cancer in Portugal in 2018: a population-based analysis using nationwide incidence and mortality data
por: Forjaz, Gonçalo, et al.
Publicado: (2020) -
Comparison of SEER Treatment Data With Medicare Claims
por: Noone, Anne-Michelle, et al.
Publicado: (2016) -
Differences in cancer survival among white and black cancer patients by presence of diabetes mellitus: Estimations based on SEER‐Medicare‐linked data resource
por: Lam, Clara, et al.
Publicado: (2018) -
Graph Machine Learning
for Improved Imputation of
Missing Tropospheric Ozone Data
por: Betancourt, Clara, et al.
Publicado: (2023) -
Reply to Letter to the Editor: Machine learning to deal with missing
disability status
por: Alves, Pedro, et al.
Publicado: (2022)