Cargando…
A method for characterizing daily physiology from widely used wearables
Millions of wearable-device users record their heart rate (HR) and activity. We introduce a statistical method to extract and track six key physiological parameters from these data, including an underlying circadian rhythm in HR (CRHR), the direct effects of activity, and the effects of meals, postu...
Autores principales: | Bowman, Clark, Huang, Yitong, Walch, Olivia J., Fang, Yu, Frank, Elena, Tyler, Jonathan, Mayer, Caleb, Stockbridge, Christopher, Goldstein, Cathy, Sen, Srijan, Forger, Daniel B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462795/ https://www.ncbi.nlm.nih.gov/pubmed/34568865 http://dx.doi.org/10.1016/j.crmeth.2021.100058 |
Ejemplares similares
-
Distinct Circadian Assessments From Wearable Data Reveal Social Distancing Promoted Internal Desynchrony Between Circadian Markers
por: Huang, Yitong, et al.
Publicado: (2021) -
Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device
por: Walch, Olivia, et al.
Publicado: (2019) -
Consumer-grade wearables identify changes in multiple physiological systems during COVID-19 disease progression
por: Mayer, Caleb, et al.
Publicado: (2022) -
Genomic heterogeneity affects the response to Daylight Saving Time
por: Tyler, Jonathan, et al.
Publicado: (2021) -
Day-to-day variability in sleep parameters and depression risk: a prospective cohort study of training physicians
por: Fang, Yu, et al.
Publicado: (2021)