Cargando…
Rational design for controlled release of Dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles
Small interfering RNA (siRNA) for silencing genes and treating disease has been a dream since ranking as a top Breakthrough of the Year in 2002 by Science. With the recent FDA approval of four siRNA-based drugs, the potential of RNA therapeutics to become the third milestone in pharmaceutical drug d...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463318/ https://www.ncbi.nlm.nih.gov/pubmed/34589275 http://dx.doi.org/10.1016/j.omtn.2021.07.021 |
_version_ | 1784572378008780800 |
---|---|
author | Binzel, Daniel W. Guo, Songchuan Yin, Hongran Lee, Tae Jin Liu, Shujun Shu, Dan Guo, Peixuan |
author_facet | Binzel, Daniel W. Guo, Songchuan Yin, Hongran Lee, Tae Jin Liu, Shujun Shu, Dan Guo, Peixuan |
author_sort | Binzel, Daniel W. |
collection | PubMed |
description | Small interfering RNA (siRNA) for silencing genes and treating disease has been a dream since ranking as a top Breakthrough of the Year in 2002 by Science. With the recent FDA approval of four siRNA-based drugs, the potential of RNA therapeutics to become the third milestone in pharmaceutical drug development has become a reality. However, the field of RNA interference (RNAi) therapeutics still faces challenges such as specificity in targeting, intracellular processing, and endosome trapping after targeted delivery. Dicer-substrate siRNAs included onto RNA nanoparticles may be able to overcome these challenges. Here, we show that pRNA-based nanoparticles can be designed to efficiently harbor the Dicer-substrate siRNAs in vitro and in vivo to the cytosol of tumor cells and release the siRNA. The structure optimization and chemical modification for controlled release of Dicer-substrate siRNAs in tumor cells were also evaluated through molecular beacon analysis. Studies on the length requirement of the overhanging siRNA revealed that at least 23 nucleotides at the dweller’s arm were needed for dicer processing. The above sequence parameters and structure optimization were confirmed in recent studies demonstrating the release of functional Survivin siRNA from the pRNA-based nanoparticles for cancer inhibition in non-small-cell lung, breast, and prostate cancer animal models. |
format | Online Article Text |
id | pubmed-8463318 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society of Gene & Cell Therapy |
record_format | MEDLINE/PubMed |
spelling | pubmed-84633182021-09-28 Rational design for controlled release of Dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles Binzel, Daniel W. Guo, Songchuan Yin, Hongran Lee, Tae Jin Liu, Shujun Shu, Dan Guo, Peixuan Mol Ther Nucleic Acids Original Article Small interfering RNA (siRNA) for silencing genes and treating disease has been a dream since ranking as a top Breakthrough of the Year in 2002 by Science. With the recent FDA approval of four siRNA-based drugs, the potential of RNA therapeutics to become the third milestone in pharmaceutical drug development has become a reality. However, the field of RNA interference (RNAi) therapeutics still faces challenges such as specificity in targeting, intracellular processing, and endosome trapping after targeted delivery. Dicer-substrate siRNAs included onto RNA nanoparticles may be able to overcome these challenges. Here, we show that pRNA-based nanoparticles can be designed to efficiently harbor the Dicer-substrate siRNAs in vitro and in vivo to the cytosol of tumor cells and release the siRNA. The structure optimization and chemical modification for controlled release of Dicer-substrate siRNAs in tumor cells were also evaluated through molecular beacon analysis. Studies on the length requirement of the overhanging siRNA revealed that at least 23 nucleotides at the dweller’s arm were needed for dicer processing. The above sequence parameters and structure optimization were confirmed in recent studies demonstrating the release of functional Survivin siRNA from the pRNA-based nanoparticles for cancer inhibition in non-small-cell lung, breast, and prostate cancer animal models. American Society of Gene & Cell Therapy 2021-08-08 /pmc/articles/PMC8463318/ /pubmed/34589275 http://dx.doi.org/10.1016/j.omtn.2021.07.021 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original Article Binzel, Daniel W. Guo, Songchuan Yin, Hongran Lee, Tae Jin Liu, Shujun Shu, Dan Guo, Peixuan Rational design for controlled release of Dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles |
title | Rational design for controlled release of Dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles |
title_full | Rational design for controlled release of Dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles |
title_fullStr | Rational design for controlled release of Dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles |
title_full_unstemmed | Rational design for controlled release of Dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles |
title_short | Rational design for controlled release of Dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles |
title_sort | rational design for controlled release of dicer-substrate sirna harbored in phi29 prna-based nanoparticles |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463318/ https://www.ncbi.nlm.nih.gov/pubmed/34589275 http://dx.doi.org/10.1016/j.omtn.2021.07.021 |
work_keys_str_mv | AT binzeldanielw rationaldesignforcontrolledreleaseofdicersubstratesirnaharboredinphi29prnabasednanoparticles AT guosongchuan rationaldesignforcontrolledreleaseofdicersubstratesirnaharboredinphi29prnabasednanoparticles AT yinhongran rationaldesignforcontrolledreleaseofdicersubstratesirnaharboredinphi29prnabasednanoparticles AT leetaejin rationaldesignforcontrolledreleaseofdicersubstratesirnaharboredinphi29prnabasednanoparticles AT liushujun rationaldesignforcontrolledreleaseofdicersubstratesirnaharboredinphi29prnabasednanoparticles AT shudan rationaldesignforcontrolledreleaseofdicersubstratesirnaharboredinphi29prnabasednanoparticles AT guopeixuan rationaldesignforcontrolledreleaseofdicersubstratesirnaharboredinphi29prnabasednanoparticles |