Cargando…
Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation
Privacy concerns around sharing personally identifiable information are a major barrier to data sharing in medical research. In many cases, researchers have no interest in a particular individual’s information but rather aim to derive insights at the level of cohorts. Here, we utilise generative adv...
Autores principales: | DuMont Schütte, August, Hetzel, Jürgen, Gatidis, Sergios, Hepp, Tobias, Dietz, Benedikt, Bauer, Stefan, Schwab, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463544/ https://www.ncbi.nlm.nih.gov/pubmed/34561528 http://dx.doi.org/10.1038/s41746-021-00507-3 |
Ejemplares similares
-
Clinical Predictive Models for COVID-19: Systematic Study
por: Schwab, Patrick, et al.
Publicado: (2020) -
Deep learning-based age estimation from clinical Computed Tomography image data of the thorax and abdomen in the adult population
por: Kerber, Bjarne, et al.
Publicado: (2023) -
Weakly supervised segmentation of tumor lesions in PET-CT hybrid imaging
por: Früh, Marcel, et al.
Publicado: (2021) -
Independent attenuation correction of whole body [(18)F]FDG-PET using a deep learning approach with Generative Adversarial Networks
por: Armanious, Karim, et al.
Publicado: (2020) -
A whole-body FDG-PET/CT Dataset with manually annotated Tumor Lesions
por: Gatidis, Sergios, et al.
Publicado: (2022)