Cargando…
Visual explanations from spiking neural networks using inter-spike intervals
By emulating biological features in brain, Spiking Neural Networks (SNNs) offer an energy-efficient alternative to conventional deep learning. To make SNNs ubiquitous, a ‘visual explanation’ technique for analysing and explaining the internal spike behavior of such temporal deep SNNs is crucial. Exp...
Autores principales: | Kim, Youngeun, Panda, Priyadarshini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463578/ https://www.ncbi.nlm.nih.gov/pubmed/34561513 http://dx.doi.org/10.1038/s41598-021-98448-0 |
Ejemplares similares
-
Revisiting Batch Normalization for Training Low-Latency Deep Spiking Neural Networks From Scratch
por: Kim, Youngeun, et al.
Publicado: (2021) -
Efficient human activity recognition with spatio-temporal spiking neural networks
por: Li, Yuhang, et al.
Publicado: (2023) -
Sharing leaky-integrate-and-fire neurons for memory-efficient spiking neural networks
por: Kim, Youngeun, et al.
Publicado: (2023) -
Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks
por: Panda, Priyadarshini, et al.
Publicado: (2017) -
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures
por: Lee, Chankyu, et al.
Publicado: (2020)