Cargando…

Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams

Though consistently shown to detect mammographically occult cancers, breast ultrasound has been noted to have high false-positive rates. In this work, we present an AI system that achieves radiologist-level accuracy in identifying breast cancer in ultrasound images. Developed on 288,767 exams, consi...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Yiqiu, Shamout, Farah E., Oliver, Jamie R., Witowski, Jan, Kannan, Kawshik, Park, Jungkyu, Wu, Nan, Huddleston, Connor, Wolfson, Stacey, Millet, Alexandra, Ehrenpreis, Robin, Awal, Divya, Tyma, Cathy, Samreen, Naziya, Gao, Yiming, Chhor, Chloe, Gandhi, Stacey, Lee, Cindy, Kumari-Subaiya, Sheila, Leonard, Cindy, Mohammed, Reyhan, Moczulski, Christopher, Altabet, Jaime, Babb, James, Lewin, Alana, Reig, Beatriu, Moy, Linda, Heacock, Laura, Geras, Krzysztof J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463596/
https://www.ncbi.nlm.nih.gov/pubmed/34561440
http://dx.doi.org/10.1038/s41467-021-26023-2
_version_ 1784572431034220544
author Shen, Yiqiu
Shamout, Farah E.
Oliver, Jamie R.
Witowski, Jan
Kannan, Kawshik
Park, Jungkyu
Wu, Nan
Huddleston, Connor
Wolfson, Stacey
Millet, Alexandra
Ehrenpreis, Robin
Awal, Divya
Tyma, Cathy
Samreen, Naziya
Gao, Yiming
Chhor, Chloe
Gandhi, Stacey
Lee, Cindy
Kumari-Subaiya, Sheila
Leonard, Cindy
Mohammed, Reyhan
Moczulski, Christopher
Altabet, Jaime
Babb, James
Lewin, Alana
Reig, Beatriu
Moy, Linda
Heacock, Laura
Geras, Krzysztof J.
author_facet Shen, Yiqiu
Shamout, Farah E.
Oliver, Jamie R.
Witowski, Jan
Kannan, Kawshik
Park, Jungkyu
Wu, Nan
Huddleston, Connor
Wolfson, Stacey
Millet, Alexandra
Ehrenpreis, Robin
Awal, Divya
Tyma, Cathy
Samreen, Naziya
Gao, Yiming
Chhor, Chloe
Gandhi, Stacey
Lee, Cindy
Kumari-Subaiya, Sheila
Leonard, Cindy
Mohammed, Reyhan
Moczulski, Christopher
Altabet, Jaime
Babb, James
Lewin, Alana
Reig, Beatriu
Moy, Linda
Heacock, Laura
Geras, Krzysztof J.
author_sort Shen, Yiqiu
collection PubMed
description Though consistently shown to detect mammographically occult cancers, breast ultrasound has been noted to have high false-positive rates. In this work, we present an AI system that achieves radiologist-level accuracy in identifying breast cancer in ultrasound images. Developed on 288,767 exams, consisting of 5,442,907 B-mode and Color Doppler images, the AI achieves an area under the receiver operating characteristic curve (AUROC) of 0.976 on a test set consisting of 44,755 exams. In a retrospective reader study, the AI achieves a higher AUROC than the average of ten board-certified breast radiologists (AUROC: 0.962 AI, 0.924 ± 0.02 radiologists). With the help of the AI, radiologists decrease their false positive rates by 37.3% and reduce requested biopsies by 27.8%, while maintaining the same level of sensitivity. This highlights the potential of AI in improving the accuracy, consistency, and efficiency of breast ultrasound diagnosis.
format Online
Article
Text
id pubmed-8463596
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-84635962021-10-22 Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams Shen, Yiqiu Shamout, Farah E. Oliver, Jamie R. Witowski, Jan Kannan, Kawshik Park, Jungkyu Wu, Nan Huddleston, Connor Wolfson, Stacey Millet, Alexandra Ehrenpreis, Robin Awal, Divya Tyma, Cathy Samreen, Naziya Gao, Yiming Chhor, Chloe Gandhi, Stacey Lee, Cindy Kumari-Subaiya, Sheila Leonard, Cindy Mohammed, Reyhan Moczulski, Christopher Altabet, Jaime Babb, James Lewin, Alana Reig, Beatriu Moy, Linda Heacock, Laura Geras, Krzysztof J. Nat Commun Article Though consistently shown to detect mammographically occult cancers, breast ultrasound has been noted to have high false-positive rates. In this work, we present an AI system that achieves radiologist-level accuracy in identifying breast cancer in ultrasound images. Developed on 288,767 exams, consisting of 5,442,907 B-mode and Color Doppler images, the AI achieves an area under the receiver operating characteristic curve (AUROC) of 0.976 on a test set consisting of 44,755 exams. In a retrospective reader study, the AI achieves a higher AUROC than the average of ten board-certified breast radiologists (AUROC: 0.962 AI, 0.924 ± 0.02 radiologists). With the help of the AI, radiologists decrease their false positive rates by 37.3% and reduce requested biopsies by 27.8%, while maintaining the same level of sensitivity. This highlights the potential of AI in improving the accuracy, consistency, and efficiency of breast ultrasound diagnosis. Nature Publishing Group UK 2021-09-24 /pmc/articles/PMC8463596/ /pubmed/34561440 http://dx.doi.org/10.1038/s41467-021-26023-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Shen, Yiqiu
Shamout, Farah E.
Oliver, Jamie R.
Witowski, Jan
Kannan, Kawshik
Park, Jungkyu
Wu, Nan
Huddleston, Connor
Wolfson, Stacey
Millet, Alexandra
Ehrenpreis, Robin
Awal, Divya
Tyma, Cathy
Samreen, Naziya
Gao, Yiming
Chhor, Chloe
Gandhi, Stacey
Lee, Cindy
Kumari-Subaiya, Sheila
Leonard, Cindy
Mohammed, Reyhan
Moczulski, Christopher
Altabet, Jaime
Babb, James
Lewin, Alana
Reig, Beatriu
Moy, Linda
Heacock, Laura
Geras, Krzysztof J.
Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams
title Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams
title_full Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams
title_fullStr Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams
title_full_unstemmed Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams
title_short Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams
title_sort artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463596/
https://www.ncbi.nlm.nih.gov/pubmed/34561440
http://dx.doi.org/10.1038/s41467-021-26023-2
work_keys_str_mv AT shenyiqiu artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT shamoutfarahe artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT oliverjamier artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT witowskijan artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT kannankawshik artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT parkjungkyu artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT wunan artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT huddlestonconnor artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT wolfsonstacey artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT milletalexandra artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT ehrenpreisrobin artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT awaldivya artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT tymacathy artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT samreennaziya artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT gaoyiming artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT chhorchloe artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT gandhistacey artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT leecindy artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT kumarisubaiyasheila artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT leonardcindy artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT mohammedreyhan artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT moczulskichristopher artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT altabetjaime artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT babbjames artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT lewinalana artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT reigbeatriu artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT moylinda artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT heacocklaura artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams
AT geraskrzysztofj artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams