Cargando…
Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams
Though consistently shown to detect mammographically occult cancers, breast ultrasound has been noted to have high false-positive rates. In this work, we present an AI system that achieves radiologist-level accuracy in identifying breast cancer in ultrasound images. Developed on 288,767 exams, consi...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463596/ https://www.ncbi.nlm.nih.gov/pubmed/34561440 http://dx.doi.org/10.1038/s41467-021-26023-2 |
_version_ | 1784572431034220544 |
---|---|
author | Shen, Yiqiu Shamout, Farah E. Oliver, Jamie R. Witowski, Jan Kannan, Kawshik Park, Jungkyu Wu, Nan Huddleston, Connor Wolfson, Stacey Millet, Alexandra Ehrenpreis, Robin Awal, Divya Tyma, Cathy Samreen, Naziya Gao, Yiming Chhor, Chloe Gandhi, Stacey Lee, Cindy Kumari-Subaiya, Sheila Leonard, Cindy Mohammed, Reyhan Moczulski, Christopher Altabet, Jaime Babb, James Lewin, Alana Reig, Beatriu Moy, Linda Heacock, Laura Geras, Krzysztof J. |
author_facet | Shen, Yiqiu Shamout, Farah E. Oliver, Jamie R. Witowski, Jan Kannan, Kawshik Park, Jungkyu Wu, Nan Huddleston, Connor Wolfson, Stacey Millet, Alexandra Ehrenpreis, Robin Awal, Divya Tyma, Cathy Samreen, Naziya Gao, Yiming Chhor, Chloe Gandhi, Stacey Lee, Cindy Kumari-Subaiya, Sheila Leonard, Cindy Mohammed, Reyhan Moczulski, Christopher Altabet, Jaime Babb, James Lewin, Alana Reig, Beatriu Moy, Linda Heacock, Laura Geras, Krzysztof J. |
author_sort | Shen, Yiqiu |
collection | PubMed |
description | Though consistently shown to detect mammographically occult cancers, breast ultrasound has been noted to have high false-positive rates. In this work, we present an AI system that achieves radiologist-level accuracy in identifying breast cancer in ultrasound images. Developed on 288,767 exams, consisting of 5,442,907 B-mode and Color Doppler images, the AI achieves an area under the receiver operating characteristic curve (AUROC) of 0.976 on a test set consisting of 44,755 exams. In a retrospective reader study, the AI achieves a higher AUROC than the average of ten board-certified breast radiologists (AUROC: 0.962 AI, 0.924 ± 0.02 radiologists). With the help of the AI, radiologists decrease their false positive rates by 37.3% and reduce requested biopsies by 27.8%, while maintaining the same level of sensitivity. This highlights the potential of AI in improving the accuracy, consistency, and efficiency of breast ultrasound diagnosis. |
format | Online Article Text |
id | pubmed-8463596 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-84635962021-10-22 Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams Shen, Yiqiu Shamout, Farah E. Oliver, Jamie R. Witowski, Jan Kannan, Kawshik Park, Jungkyu Wu, Nan Huddleston, Connor Wolfson, Stacey Millet, Alexandra Ehrenpreis, Robin Awal, Divya Tyma, Cathy Samreen, Naziya Gao, Yiming Chhor, Chloe Gandhi, Stacey Lee, Cindy Kumari-Subaiya, Sheila Leonard, Cindy Mohammed, Reyhan Moczulski, Christopher Altabet, Jaime Babb, James Lewin, Alana Reig, Beatriu Moy, Linda Heacock, Laura Geras, Krzysztof J. Nat Commun Article Though consistently shown to detect mammographically occult cancers, breast ultrasound has been noted to have high false-positive rates. In this work, we present an AI system that achieves radiologist-level accuracy in identifying breast cancer in ultrasound images. Developed on 288,767 exams, consisting of 5,442,907 B-mode and Color Doppler images, the AI achieves an area under the receiver operating characteristic curve (AUROC) of 0.976 on a test set consisting of 44,755 exams. In a retrospective reader study, the AI achieves a higher AUROC than the average of ten board-certified breast radiologists (AUROC: 0.962 AI, 0.924 ± 0.02 radiologists). With the help of the AI, radiologists decrease their false positive rates by 37.3% and reduce requested biopsies by 27.8%, while maintaining the same level of sensitivity. This highlights the potential of AI in improving the accuracy, consistency, and efficiency of breast ultrasound diagnosis. Nature Publishing Group UK 2021-09-24 /pmc/articles/PMC8463596/ /pubmed/34561440 http://dx.doi.org/10.1038/s41467-021-26023-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Shen, Yiqiu Shamout, Farah E. Oliver, Jamie R. Witowski, Jan Kannan, Kawshik Park, Jungkyu Wu, Nan Huddleston, Connor Wolfson, Stacey Millet, Alexandra Ehrenpreis, Robin Awal, Divya Tyma, Cathy Samreen, Naziya Gao, Yiming Chhor, Chloe Gandhi, Stacey Lee, Cindy Kumari-Subaiya, Sheila Leonard, Cindy Mohammed, Reyhan Moczulski, Christopher Altabet, Jaime Babb, James Lewin, Alana Reig, Beatriu Moy, Linda Heacock, Laura Geras, Krzysztof J. Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams |
title | Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams |
title_full | Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams |
title_fullStr | Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams |
title_full_unstemmed | Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams |
title_short | Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams |
title_sort | artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463596/ https://www.ncbi.nlm.nih.gov/pubmed/34561440 http://dx.doi.org/10.1038/s41467-021-26023-2 |
work_keys_str_mv | AT shenyiqiu artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT shamoutfarahe artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT oliverjamier artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT witowskijan artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT kannankawshik artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT parkjungkyu artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT wunan artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT huddlestonconnor artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT wolfsonstacey artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT milletalexandra artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT ehrenpreisrobin artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT awaldivya artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT tymacathy artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT samreennaziya artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT gaoyiming artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT chhorchloe artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT gandhistacey artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT leecindy artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT kumarisubaiyasheila artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT leonardcindy artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT mohammedreyhan artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT moczulskichristopher artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT altabetjaime artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT babbjames artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT lewinalana artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT reigbeatriu artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT moylinda artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT heacocklaura artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams AT geraskrzysztofj artificialintelligencesystemreducesfalsepositivefindingsintheinterpretationofbreastultrasoundexams |