Cargando…
Robust whole slide image analysis for cervical cancer screening using deep learning
Computer-assisted diagnosis is key for scaling up cervical cancer screening. However, current recognition algorithms perform poorly on whole slide image (WSI) analysis, fail to generalize for diverse staining and imaging, and show sub-optimal clinical-level verification. Here, we develop a progressi...
Autores principales: | Cheng, Shenghua, Liu, Sibo, Yu, Jingya, Rao, Gong, Xiao, Yuwei, Han, Wei, Zhu, Wenjie, Lv, Xiaohua, Li, Ning, Cai, Jing, Wang, Zehua, Feng, Xi, Yang, Fei, Geng, Xiebo, Ma, Jiabo, Li, Xu, Wei, Ziquan, Zhang, Xueying, Quan, Tingwei, Zeng, Shaoqun, Chen, Li, Hu, Junbo, Liu, Xiuli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463673/ https://www.ncbi.nlm.nih.gov/pubmed/34561435 http://dx.doi.org/10.1038/s41467-021-25296-x |
Ejemplares similares
-
An unsupervised style normalization method for cytopathology images
por: Chen, Xihao, et al.
Publicado: (2021) -
StainNet: A Fast and Robust Stain Normalization Network
por: Kang, Hongtao, et al.
Publicado: (2021) -
Foreground Estimation in Neuronal Images With a Sparse-Smooth Model for Robust Quantification
por: Liu, Shijie, et al.
Publicado: (2021) -
Large-scale localization of touching somas from 3D images using density-peak clustering
por: Cheng, Shenghua, et al.
Publicado: (2016) -
Penetration model for chemical reactivation for resin-embedded green fluorescent protein imaging
por: Li, Longhui, et al.
Publicado: (2018)