Cargando…
Transcriptome and structure analysis in root of Casuarina equisetifolia under NaCl treatment
BACKGROUND: High soil salinity seriously affects plant growth and development. Excessive salt ions mainly cause damage by inducing osmotic stress, ion toxicity, and oxidation stress. Casuarina equisetifolia is a highly salt-tolerant plant, commonly grown as wind belts in coastal areas with sandy soi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8464194/ https://www.ncbi.nlm.nih.gov/pubmed/34616610 http://dx.doi.org/10.7717/peerj.12133 |
_version_ | 1784572572966322176 |
---|---|
author | Wang, Yujiao Zhang, Jin Qiu, Zhenfei Zeng, Bingshan Zhang, Yong Wang, Xiaoping Chen, Jun Zhong, Chonglu Deng, Rufang Fan, Chunjie |
author_facet | Wang, Yujiao Zhang, Jin Qiu, Zhenfei Zeng, Bingshan Zhang, Yong Wang, Xiaoping Chen, Jun Zhong, Chonglu Deng, Rufang Fan, Chunjie |
author_sort | Wang, Yujiao |
collection | PubMed |
description | BACKGROUND: High soil salinity seriously affects plant growth and development. Excessive salt ions mainly cause damage by inducing osmotic stress, ion toxicity, and oxidation stress. Casuarina equisetifolia is a highly salt-tolerant plant, commonly grown as wind belts in coastal areas with sandy soils. However, little is known about its physiology and the molecular mechanism of its response to salt stress. RESULTS: Eight-week-old C. equisetifolia seedlings grown from rooted cuttings were exposed to salt stress for varying durations (0, 1, 6, 24, and 168 h under 200 mM NaCl) and their ion contents, cellular structure, and transcriptomes were analyzed. Potassium concentration decreased slowly between 1 h and 24 h after initiation of salt treatment, while the content of potassium was significantly lower after 168 h of salt treatment. Root epidermal cells were shed and a more compact layer of cells formed as the treatment duration increased. Salt stress led to deformation of cells and damage to mitochondria in the epidermis and endodermis, whereas stele cells suffered less damage. Transcriptome analysis identified 10,378 differentially expressed genes (DEGs), with more genes showing differential expression after 24 h and 168 h of exposure than after shorter durations of exposure to salinity. Signal transduction and ion transport genes such as HKT and CHX were enriched among DEGs in the early stages (1 h or 6 h) of salt stress, while expression of genes involved in programmed cell death was significantly upregulated at 168 h, corresponding to changes in ion contents and cell structure of roots. Oxidative stress and detoxification genes were also expressed differentially and were enriched among DEGs at different stages. CONCLUSIONS: These results not only elucidate the mechanism and the molecular pathway governing salt tolerance, but also serve as a basis for identifying gene function related to salt stress in C. equisetifolia. |
format | Online Article Text |
id | pubmed-8464194 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84641942021-10-05 Transcriptome and structure analysis in root of Casuarina equisetifolia under NaCl treatment Wang, Yujiao Zhang, Jin Qiu, Zhenfei Zeng, Bingshan Zhang, Yong Wang, Xiaoping Chen, Jun Zhong, Chonglu Deng, Rufang Fan, Chunjie PeerJ Bioinformatics BACKGROUND: High soil salinity seriously affects plant growth and development. Excessive salt ions mainly cause damage by inducing osmotic stress, ion toxicity, and oxidation stress. Casuarina equisetifolia is a highly salt-tolerant plant, commonly grown as wind belts in coastal areas with sandy soils. However, little is known about its physiology and the molecular mechanism of its response to salt stress. RESULTS: Eight-week-old C. equisetifolia seedlings grown from rooted cuttings were exposed to salt stress for varying durations (0, 1, 6, 24, and 168 h under 200 mM NaCl) and their ion contents, cellular structure, and transcriptomes were analyzed. Potassium concentration decreased slowly between 1 h and 24 h after initiation of salt treatment, while the content of potassium was significantly lower after 168 h of salt treatment. Root epidermal cells were shed and a more compact layer of cells formed as the treatment duration increased. Salt stress led to deformation of cells and damage to mitochondria in the epidermis and endodermis, whereas stele cells suffered less damage. Transcriptome analysis identified 10,378 differentially expressed genes (DEGs), with more genes showing differential expression after 24 h and 168 h of exposure than after shorter durations of exposure to salinity. Signal transduction and ion transport genes such as HKT and CHX were enriched among DEGs in the early stages (1 h or 6 h) of salt stress, while expression of genes involved in programmed cell death was significantly upregulated at 168 h, corresponding to changes in ion contents and cell structure of roots. Oxidative stress and detoxification genes were also expressed differentially and were enriched among DEGs at different stages. CONCLUSIONS: These results not only elucidate the mechanism and the molecular pathway governing salt tolerance, but also serve as a basis for identifying gene function related to salt stress in C. equisetifolia. PeerJ Inc. 2021-09-22 /pmc/articles/PMC8464194/ /pubmed/34616610 http://dx.doi.org/10.7717/peerj.12133 Text en ©2021 Wang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Bioinformatics Wang, Yujiao Zhang, Jin Qiu, Zhenfei Zeng, Bingshan Zhang, Yong Wang, Xiaoping Chen, Jun Zhong, Chonglu Deng, Rufang Fan, Chunjie Transcriptome and structure analysis in root of Casuarina equisetifolia under NaCl treatment |
title | Transcriptome and structure analysis in root of Casuarina equisetifolia under NaCl treatment |
title_full | Transcriptome and structure analysis in root of Casuarina equisetifolia under NaCl treatment |
title_fullStr | Transcriptome and structure analysis in root of Casuarina equisetifolia under NaCl treatment |
title_full_unstemmed | Transcriptome and structure analysis in root of Casuarina equisetifolia under NaCl treatment |
title_short | Transcriptome and structure analysis in root of Casuarina equisetifolia under NaCl treatment |
title_sort | transcriptome and structure analysis in root of casuarina equisetifolia under nacl treatment |
topic | Bioinformatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8464194/ https://www.ncbi.nlm.nih.gov/pubmed/34616610 http://dx.doi.org/10.7717/peerj.12133 |
work_keys_str_mv | AT wangyujiao transcriptomeandstructureanalysisinrootofcasuarinaequisetifoliaundernacltreatment AT zhangjin transcriptomeandstructureanalysisinrootofcasuarinaequisetifoliaundernacltreatment AT qiuzhenfei transcriptomeandstructureanalysisinrootofcasuarinaequisetifoliaundernacltreatment AT zengbingshan transcriptomeandstructureanalysisinrootofcasuarinaequisetifoliaundernacltreatment AT zhangyong transcriptomeandstructureanalysisinrootofcasuarinaequisetifoliaundernacltreatment AT wangxiaoping transcriptomeandstructureanalysisinrootofcasuarinaequisetifoliaundernacltreatment AT chenjun transcriptomeandstructureanalysisinrootofcasuarinaequisetifoliaundernacltreatment AT zhongchonglu transcriptomeandstructureanalysisinrootofcasuarinaequisetifoliaundernacltreatment AT dengrufang transcriptomeandstructureanalysisinrootofcasuarinaequisetifoliaundernacltreatment AT fanchunjie transcriptomeandstructureanalysisinrootofcasuarinaequisetifoliaundernacltreatment |