Cargando…

Preparation of ZIF@ADH/NAD-MSN/LDH Core Shell Nanocomposites for the Enhancement of Coenzyme Catalyzed Double Enzyme Cascade

The field of enzyme cascades in limited microscale or nanoscale environments has undergone a quick growth and attracted increasing interests in the field of rapid development of systems chemistry. In this study, alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH), and mesoporous silica nanopart...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Le, Sun, Pengxue, Yang, Yiyu, Qiao, Hanzhen, Tian, Hailong, Wu, Dapeng, Yang, Shuoye, Yuan, Qipeng, Wang, Jinshui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8464746/
https://www.ncbi.nlm.nih.gov/pubmed/34578486
http://dx.doi.org/10.3390/nano11092171
Descripción
Sumario:The field of enzyme cascades in limited microscale or nanoscale environments has undergone a quick growth and attracted increasing interests in the field of rapid development of systems chemistry. In this study, alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH), and mesoporous silica nanoparticles (MSN) immobilized nicotinamide adenine dinucleotide (NAD(+)) were successfully immobilized on the zeolitic imidazolate frameworks (ZIFs). This immobilized product was named ZIF@ADH/NAD-MSN/LDH, and the effect of the multi-enzyme cascade was studied by measuring the catalytic synthesis of lactic acid. The loading efficiency of the enzyme in the in-situ co-immobilization method reached 92.65%. The synthesis rate of lactic acid was increased to 70.10%, which was about 2.82 times that of the free enzyme under the optimal conditions (40 °C, pH = 8). Additionally, ZIF@ADH/NAD-MSN/LDH had experimental stability (71.67% relative activity after four experiments) and storage stability (93.45% relative activity after three weeks of storage at 4 °C; 76.89% relative activity after incubation in acetonitrile-aqueous solution for 1 h; 27.42% relative activity after incubation in 15% N, N-Dimethylformamide (DMF) solution for 1 h). In summary, in this paper, the cyclic regeneration of coenzymes was achieved, and the reaction efficiency of the multi-enzyme biocatalytic cascade was improved due to the reduction of substrate diffusion.