Cargando…
The Cholinergic Anti-Inflammatory Pathway Attenuates the Development of Atherosclerosis in Apoe(-/-) Mice through Modulating Macrophage Functions
(1) Background: The cholinergic anti-inflammatory pathway (CAP) has been implicated in the regulation of various diseases, including chronic inflammatory cardiovascular disorders such as atherosclerosis (AS). This study aims to explore the underlying regulatory mechanisms of CAP activity in the prog...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8464862/ https://www.ncbi.nlm.nih.gov/pubmed/34572339 http://dx.doi.org/10.3390/biomedicines9091150 |
Sumario: | (1) Background: The cholinergic anti-inflammatory pathway (CAP) has been implicated in the regulation of various diseases, including chronic inflammatory cardiovascular disorders such as atherosclerosis (AS). This study aims to explore the underlying regulatory mechanisms of CAP activity in the progression of AS. (2) Methods: The Apoe(-/-) mice were subjected to sham, bilateral cervical vagotomy surgery (VGX), and VGX supplemented with Gainesville Tokushima scientists (GTS)-21 (4 mg/kg/d) and then fed with a high-fat diet for 10 weeks. Atherosclerotic lesion size and inflammation levels were investigated by histology and inflammatory cytokines analysis. The blood M1/M2 macrophages were analyzed by flow cytometry. Primary mouse bone marrow-derived macrophages (BMDM), peritoneal macrophages, and RAW264.7 cells were treated with CAP agonists acetylcholine (Ach) and GTS-21 to study their effects on macrophage functions. (3) Results: Compared with the sham group, inhibition of CAP by the VGX resulted in growing aortic lipid plaque area, deteriorated inflammatory levels, and aberrant quantity of M1/M2 macrophages in Apoe(-/-) mice. However, these detrimental effects of VGX were significantly ameliorated by the reactivation of CAP through GTS-21 treatment. The in vitro study using macrophages revealed that stimulation with CAP agonists suppressed M1, but promoted M2 macrophage polarization through the upregulation of TNFAIP3 and phosphorylation STAT3 levels, respectively. Moreover, the activation of CAP inhibited the formation of macrophage foam cells in the peritoneal cavity by regulating genes related to cholesterol metabolism. (4) Conclusions: This study provides novel evidence and mechanisms that the CAP plays an important role in the regulation of AS development by controlling macrophage functions, implying a potential use of CAP activation as a therapeutic strategy for AS treatment. |
---|