Cargando…

Evaluation of Plaque Vulnerability via Combination of Hemodynamic Analysis and Simultaneous Non-Contrast Angiography and Intraplaque Hemorrhage (SNAP) Sequence for Carotid Intraplaque Hemorrhage

The purpose of this study was to assess the vulnerability of plaque using a combination of simultaneous non-contrast angiography, intraplaque hemorrhage (SNAP) sequence, and local hemodynamic analysis in an intraplaque hemorrhage (IPH), and to evaluate the association between morphological and hemod...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Ui Yun, Kwak, Hyo Sung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465016/
https://www.ncbi.nlm.nih.gov/pubmed/34575633
http://dx.doi.org/10.3390/jpm11090856
Descripción
Sumario:The purpose of this study was to assess the vulnerability of plaque using a combination of simultaneous non-contrast angiography, intraplaque hemorrhage (SNAP) sequence, and local hemodynamic analysis in an intraplaque hemorrhage (IPH), and to evaluate the association between morphological and hemodynamic factors and IPH by comparing the IPH (presence of IPH) and non-IPH (plaque with absence of IPH) groups. In total, 27 IPH patients and 27 non-IPH patients were involved in this study, and baseline characteristics were collected. For morphological factors, diameters, and areas of the internal carotid artery (ICA), external carotid artery, and common carotid artery were measured, and bifurcation angle (α) and ICA angle (β) were also measured for comparison between the IPH group and non-IPH group. For hemodynamic factors, time-averaged wall shear stress (WSS), minimum WSS, maximum WSS, and oscillatory shear index were calculated using computational fluid dynamics (CFD) simulations. For the qualitative analysis, cross-sectional images with analyzed WSS and SNAP sequences were combined to precisely assess local hemodynamics. Bifurcation angle (α) was significantly different between the IPH and non-IPH groups (39.47 degrees vs. 47.60 degrees, p = 0.041). Significantly higher time-averaged WSS, minimum WSS, and maximum WSS were observed in the IPH group compared to the non-IPH group. In the IPH group, when using the combined analysis with SNAP sequences and WSS, the WSS of the region with IPH was significantly higher than the region without IPH (2.32 vs. 1.21 Pa, p = 0.005). A smaller bifurcation angle (α) and higher time-averaged WSS, minimum WSS, and maximum WSS were associated with IPH. The combined analysis of SNAP sequences and WSS might help to evaluate the risk of carotid IPH.