Cargando…

Macrophages in Atherosclerosis, First or Second Row Players?

Macrophages represent a cell type that has been widely described in the context of atherosclerosis since the earliest studies in the 17th century. Their role has long been considered to be preponderant in the onset and aggravation of atherosclerosis, in particular by participating in the establishme...

Descripción completa

Detalles Bibliográficos
Autores principales: Checkouri, Eloïse, Blanchard, Valentin, Meilhac, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465019/
https://www.ncbi.nlm.nih.gov/pubmed/34572399
http://dx.doi.org/10.3390/biomedicines9091214
Descripción
Sumario:Macrophages represent a cell type that has been widely described in the context of atherosclerosis since the earliest studies in the 17th century. Their role has long been considered to be preponderant in the onset and aggravation of atherosclerosis, in particular by participating in the establishment of a chronic inflammatory state by the release of pro-inflammatory cytokines and by uncontrolled engorgement of lipids resulting in the formation of foam cells and later of the necrotic core. However, recent evidence from mouse models using an elegant technique of tracing vascular smooth muscle cells (VSMCs) during plaque development revealed that resident VSMCs display impressive plastic properties in response to an arterial injury, allowing them to switch into different cell types within the plaque, including mesenchymal-like cells, macrophage-like cells and osteochondrogenic-like cells. In this review, we oppose the arguments in favor or against the influence of macrophages versus VSMCs in all stages of atherosclerosis including pre-atherosclerosis, formation of lipid-rich foam cells, development of the necrotic core and the fibrous cap as well as calcification and rupture of the plaque. We also analyze the relevance of animal models for the investigation of the pathophysiological mechanisms of atherosclerosis in humans, and discuss potential therapeutic strategies targeting either VSMCs or macrophage to prevent the development of cardiovascular events. Overall, although major findings have been made from animal models, efforts are still needed to better understand and therefore prevent the development of atherosclerotic plaques in humans.