Cargando…
A Fast Approach to Removing Muscle Artifacts for EEG with Signal Serialization Based Ensemble Empirical Mode Decomposition
An electroencephalogram (EEG) is an electrophysiological signal reflecting the functional state of the brain. As the control signal of the brain–computer interface (BCI), EEG may build a bridge between humans and computers to improve the life quality for patients with movement disorders. The collect...
Autores principales: | Dai, Yangyang, Duan, Feng, Feng, Fan, Sun, Zhe, Zhang, Yu, Caiafa, Cesar F., Marti-Puig, Pere, Solé-Casals, Jordi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465074/ https://www.ncbi.nlm.nih.gov/pubmed/34573795 http://dx.doi.org/10.3390/e23091170 |
Ejemplares similares
-
Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis
por: Chen, Xuning, et al.
Publicado: (2022) -
Common Methodology for Cardiac and Ocular Artifact Suppression from EEG Recordings by Combining Ensemble Empirical Mode Decomposition with Regression Approach
por: Patel, Rajesh, et al.
Publicado: (2017) -
A New Method to Generate Artificial Frames Using the Empirical Mode Decomposition for an EEG-Based Motor Imagery BCI
por: Dinarès-Ferran, Josep, et al.
Publicado: (2018) -
EOG Artifact Correction from EEG Recording Using Stationary Subspace Analysis and Empirical Mode Decomposition
por: Zeng, Hong, et al.
Publicado: (2013) -
Fast multidimensional ensemble empirical mode decomposition for the analysis of big spatio-temporal datasets
por: Wu, Zhaohua, et al.
Publicado: (2016)