Cargando…
Detection of COVID-19 Patients from CT Scan and Chest X-ray Data Using Modified MobileNetV2 and LIME
The COVID-19 global pandemic caused by the widespread transmission of the novel coronavirus (SARS-CoV-2) has become one of modern history’s most challenging issues from a healthcare perspective. At its dawn, still without a vaccine, contagion containment strategies remained most effective in prevent...
Autores principales: | Ahsan, Md Manjurul, Nazim, Redwan, Siddique, Zahed, Huebner, Pedro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465084/ https://www.ncbi.nlm.nih.gov/pubmed/34574873 http://dx.doi.org/10.3390/healthcare9091099 |
Ejemplares similares
-
Diagnosis of COVID-19 Disease in Chest CT-Scan Images Based on Combination of Low-Level Texture Analysis and MobileNetV2 Features
por: Yazdani, Azita, et al.
Publicado: (2022) -
Application of MobileNetV2 to waste classification
por: Yong, Liying, et al.
Publicado: (2023) -
Parking Lot Occupancy Detection with Improved MobileNetV3
por: Yuldashev, Yusufbek, et al.
Publicado: (2023) -
Fruit classification using attention-based MobileNetV2 for industrial applications
por: Shahi, Tej Bahadur, et al.
Publicado: (2022) -
Improved MobileNetV2 crop disease identification model for intelligent agriculture
por: Lu, Jianbo, et al.
Publicado: (2023)