Cargando…

Object or Background: An Interpretable Deep Learning Model for COVID-19 Detection from CT-Scan Images

The new strains of the pandemic COVID-19 are still looming. It is important to develop multiple approaches for timely and accurate detection of COVID-19 and its variants. Deep learning techniques are well proved for their efficiency in providing solutions to many social and economic problems. Howeve...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Gurmail, Yow, Kin-Choong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465137/
https://www.ncbi.nlm.nih.gov/pubmed/34574073
http://dx.doi.org/10.3390/diagnostics11091732
Descripción
Sumario:The new strains of the pandemic COVID-19 are still looming. It is important to develop multiple approaches for timely and accurate detection of COVID-19 and its variants. Deep learning techniques are well proved for their efficiency in providing solutions to many social and economic problems. However, the transparency of the reasoning process of a deep learning model related to a high stake decision is a necessity. In this work, we propose an interpretable deep learning model Ps-ProtoPNet to detect COVID-19 from the medical images. Ps-ProtoPNet classifies the images by recognizing the objects rather than their background in the images. We demonstrate our model on the dataset of the chest CT-scan images. The highest accuracy that our model achieves is [Formula: see text].