Cargando…
Small Molecules Targeting Programmed Cell Death in Breast Cancer Cells
Targeted chemotherapy has become the forefront for cancer treatment in recent years. The selective and specific features allow more effective treatment with reduced side effects. Most targeted therapies, which include small molecules, act on specific molecular targets that are altered in tumour cell...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465612/ https://www.ncbi.nlm.nih.gov/pubmed/34575883 http://dx.doi.org/10.3390/ijms22189722 |
_version_ | 1784572920539906048 |
---|---|
author | Maniam, Subashani Maniam, Sandra |
author_facet | Maniam, Subashani Maniam, Sandra |
author_sort | Maniam, Subashani |
collection | PubMed |
description | Targeted chemotherapy has become the forefront for cancer treatment in recent years. The selective and specific features allow more effective treatment with reduced side effects. Most targeted therapies, which include small molecules, act on specific molecular targets that are altered in tumour cells, mainly in cancers such as breast, lung, colorectal, lymphoma and leukaemia. With the recent exponential progress in drug development, programmed cell death, which includes apoptosis and autophagy, has become a promising therapeutic target. The research in identifying effective small molecules that target compensatory mechanisms in tumour cells alleviates the emergence of drug resistance. Due to the heterogenous nature of breast cancer, various attempts were made to overcome chemoresistance. Amongst breast cancers, triple negative breast cancer (TNBC) is of particular interest due to its heterogeneous nature in response to chemotherapy. TNBC represents approximately 15% of all breast tumours, however, and still has a poor prognosis. Unlike other breast tumours, signature targets lack for TNBCs, causing high morbidity and mortality. This review highlights several small molecules with promising preclinical data that target autophagy and apoptosis to induce cell death in TNBC cells. |
format | Online Article Text |
id | pubmed-8465612 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84656122021-09-27 Small Molecules Targeting Programmed Cell Death in Breast Cancer Cells Maniam, Subashani Maniam, Sandra Int J Mol Sci Review Targeted chemotherapy has become the forefront for cancer treatment in recent years. The selective and specific features allow more effective treatment with reduced side effects. Most targeted therapies, which include small molecules, act on specific molecular targets that are altered in tumour cells, mainly in cancers such as breast, lung, colorectal, lymphoma and leukaemia. With the recent exponential progress in drug development, programmed cell death, which includes apoptosis and autophagy, has become a promising therapeutic target. The research in identifying effective small molecules that target compensatory mechanisms in tumour cells alleviates the emergence of drug resistance. Due to the heterogenous nature of breast cancer, various attempts were made to overcome chemoresistance. Amongst breast cancers, triple negative breast cancer (TNBC) is of particular interest due to its heterogeneous nature in response to chemotherapy. TNBC represents approximately 15% of all breast tumours, however, and still has a poor prognosis. Unlike other breast tumours, signature targets lack for TNBCs, causing high morbidity and mortality. This review highlights several small molecules with promising preclinical data that target autophagy and apoptosis to induce cell death in TNBC cells. MDPI 2021-09-08 /pmc/articles/PMC8465612/ /pubmed/34575883 http://dx.doi.org/10.3390/ijms22189722 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Maniam, Subashani Maniam, Sandra Small Molecules Targeting Programmed Cell Death in Breast Cancer Cells |
title | Small Molecules Targeting Programmed Cell Death in Breast Cancer Cells |
title_full | Small Molecules Targeting Programmed Cell Death in Breast Cancer Cells |
title_fullStr | Small Molecules Targeting Programmed Cell Death in Breast Cancer Cells |
title_full_unstemmed | Small Molecules Targeting Programmed Cell Death in Breast Cancer Cells |
title_short | Small Molecules Targeting Programmed Cell Death in Breast Cancer Cells |
title_sort | small molecules targeting programmed cell death in breast cancer cells |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465612/ https://www.ncbi.nlm.nih.gov/pubmed/34575883 http://dx.doi.org/10.3390/ijms22189722 |
work_keys_str_mv | AT maniamsubashani smallmoleculestargetingprogrammedcelldeathinbreastcancercells AT maniamsandra smallmoleculestargetingprogrammedcelldeathinbreastcancercells |