Cargando…

Texture Evolution and Nanohardness in Cu-Nb Composite Wires

Multifilamentary microcomposite copper-niobium (Cu-Nb) wires were fabricated by a series of accumulative drawing and bonding steps (ADB). The texture of the Cu matrix in these wires was studied using electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). Dynamic recrys...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiang, Shihua, Yang, Xiaofang, Liang, Yanxiang, Wang, Lu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465623/
https://www.ncbi.nlm.nih.gov/pubmed/34576517
http://dx.doi.org/10.3390/ma14185294
Descripción
Sumario:Multifilamentary microcomposite copper-niobium (Cu-Nb) wires were fabricated by a series of accumulative drawing and bonding steps (ADB). The texture of the Cu matrix in these wires was studied using electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). Dynamic recrystallization during cold drawing caused a weakening of the <111> texture in the micron-scale Cu matrix at high values of true strain. A sharp <111> texture was observed in the nano-scale Cu matrix due to the suppression of dynamic recrystallization. The grain size was reduced by the higher level of dynamic recrystallization at high strains. The relation between the nanoindentation behavior of the different Cu matrix and the grain sizes, Cu-Nb interface, and texture was established.