Cargando…
Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review
SIMPLE SUMMARY: Fungal pathogens were reported to cause about 70–80% losses in yield. Nanotechnology can be a panacea to this problem by reducing the negative effect of the fungicides, enhancing the solubility of low water-soluble fungicides, and reducing their toxic effect in a sustainable and eco-...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465907/ https://www.ncbi.nlm.nih.gov/pubmed/34571758 http://dx.doi.org/10.3390/biology10090881 |
_version_ | 1784572996435836928 |
---|---|
author | Kutawa, Abdulaziz Bashir Ahmad, Khairulmazmi Ali, Asgar Hussein, Mohd Zobir Abdul Wahab, Mohd Aswad Adamu, Abdullahi Ismaila, Abubakar A. Gunasena, Mahesh Tiran Rahman, Muhammad Ziaur Hossain, Md Imam |
author_facet | Kutawa, Abdulaziz Bashir Ahmad, Khairulmazmi Ali, Asgar Hussein, Mohd Zobir Abdul Wahab, Mohd Aswad Adamu, Abdullahi Ismaila, Abubakar A. Gunasena, Mahesh Tiran Rahman, Muhammad Ziaur Hossain, Md Imam |
author_sort | Kutawa, Abdulaziz Bashir |
collection | PubMed |
description | SIMPLE SUMMARY: Fungal pathogens were reported to cause about 70–80% losses in yield. Nanotechnology can be a panacea to this problem by reducing the negative effect of the fungicides, enhancing the solubility of low water-soluble fungicides, and reducing their toxic effect in a sustainable and eco-friendly manner. This review focuses on the description, properties, and synthesis of nanoparticles, their utilization for plant pathogenic fungal disease control (either in the form of nanoparticles alone, or in the form of a nanocarrier for several fungicides), nano-formulations of agro-nanofungicides, Zataria multiflora, and ginger essential oils to control plant pathogenic fungi, as well as the biosafety and limitations of the nanoparticles applications. ABSTRACT: Approximately 15–18% of crops losses occur as a result of animal pests, while weeds and microbial diseases cause 34 and 16% losses, respectively. Fungal pathogens cause about 70–80% losses in yield. The present strategies for plant disease control depend transcendently on agrochemicals that cause negative effects on the environment and humans. Nanotechnology can help by reducing the negative impact of the fungicides, such as enhancing the solubility of low water-soluble fungicides, increasing the shelf-life, and reducing toxicity, in a sustainable and eco-friendly manner. Despite many advantages of the utilization of nanoparticles, very few nanoparticle-based products have so far been produced in commercial quantities for agricultural purposes. The shortage of commercial uses may be associated with many factors, for example, a lack of pest crop host systems usage and the insufficient number of field trials. In some areas, nanotechnology has been advanced, and the best way to be in touch with the advances in nanotechnology in agriculture is to understand the major aspect of the research and to address the scientific gaps in order to facilitate the development which can provide a rationale of different nanoproducts in commercial quantity. In this review, we, therefore, described the properties and synthesis of nanoparticles, their utilization for plant pathogenic fungal disease control (either in the form of (a) nanoparticles alone, that act as a protectant or (b) in the form of a nanocarrier for different fungicides), nano-formulations of agro-nanofungicides, Zataria multiflora, and ginger essential oils to control plant pathogenic fungi, as well as the biosafety and limitations of the nanoparticles applications. |
format | Online Article Text |
id | pubmed-8465907 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84659072021-09-27 Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review Kutawa, Abdulaziz Bashir Ahmad, Khairulmazmi Ali, Asgar Hussein, Mohd Zobir Abdul Wahab, Mohd Aswad Adamu, Abdullahi Ismaila, Abubakar A. Gunasena, Mahesh Tiran Rahman, Muhammad Ziaur Hossain, Md Imam Biology (Basel) Review SIMPLE SUMMARY: Fungal pathogens were reported to cause about 70–80% losses in yield. Nanotechnology can be a panacea to this problem by reducing the negative effect of the fungicides, enhancing the solubility of low water-soluble fungicides, and reducing their toxic effect in a sustainable and eco-friendly manner. This review focuses on the description, properties, and synthesis of nanoparticles, their utilization for plant pathogenic fungal disease control (either in the form of nanoparticles alone, or in the form of a nanocarrier for several fungicides), nano-formulations of agro-nanofungicides, Zataria multiflora, and ginger essential oils to control plant pathogenic fungi, as well as the biosafety and limitations of the nanoparticles applications. ABSTRACT: Approximately 15–18% of crops losses occur as a result of animal pests, while weeds and microbial diseases cause 34 and 16% losses, respectively. Fungal pathogens cause about 70–80% losses in yield. The present strategies for plant disease control depend transcendently on agrochemicals that cause negative effects on the environment and humans. Nanotechnology can help by reducing the negative impact of the fungicides, such as enhancing the solubility of low water-soluble fungicides, increasing the shelf-life, and reducing toxicity, in a sustainable and eco-friendly manner. Despite many advantages of the utilization of nanoparticles, very few nanoparticle-based products have so far been produced in commercial quantities for agricultural purposes. The shortage of commercial uses may be associated with many factors, for example, a lack of pest crop host systems usage and the insufficient number of field trials. In some areas, nanotechnology has been advanced, and the best way to be in touch with the advances in nanotechnology in agriculture is to understand the major aspect of the research and to address the scientific gaps in order to facilitate the development which can provide a rationale of different nanoproducts in commercial quantity. In this review, we, therefore, described the properties and synthesis of nanoparticles, their utilization for plant pathogenic fungal disease control (either in the form of (a) nanoparticles alone, that act as a protectant or (b) in the form of a nanocarrier for different fungicides), nano-formulations of agro-nanofungicides, Zataria multiflora, and ginger essential oils to control plant pathogenic fungi, as well as the biosafety and limitations of the nanoparticles applications. MDPI 2021-09-08 /pmc/articles/PMC8465907/ /pubmed/34571758 http://dx.doi.org/10.3390/biology10090881 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Kutawa, Abdulaziz Bashir Ahmad, Khairulmazmi Ali, Asgar Hussein, Mohd Zobir Abdul Wahab, Mohd Aswad Adamu, Abdullahi Ismaila, Abubakar A. Gunasena, Mahesh Tiran Rahman, Muhammad Ziaur Hossain, Md Imam Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review |
title | Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review |
title_full | Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review |
title_fullStr | Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review |
title_full_unstemmed | Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review |
title_short | Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review |
title_sort | trends in nanotechnology and its potentialities to control plant pathogenic fungi: a review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465907/ https://www.ncbi.nlm.nih.gov/pubmed/34571758 http://dx.doi.org/10.3390/biology10090881 |
work_keys_str_mv | AT kutawaabdulazizbashir trendsinnanotechnologyanditspotentialitiestocontrolplantpathogenicfungiareview AT ahmadkhairulmazmi trendsinnanotechnologyanditspotentialitiestocontrolplantpathogenicfungiareview AT aliasgar trendsinnanotechnologyanditspotentialitiestocontrolplantpathogenicfungiareview AT husseinmohdzobir trendsinnanotechnologyanditspotentialitiestocontrolplantpathogenicfungiareview AT abdulwahabmohdaswad trendsinnanotechnologyanditspotentialitiestocontrolplantpathogenicfungiareview AT adamuabdullahi trendsinnanotechnologyanditspotentialitiestocontrolplantpathogenicfungiareview AT ismailaabubakara trendsinnanotechnologyanditspotentialitiestocontrolplantpathogenicfungiareview AT gunasenamaheshtiran trendsinnanotechnologyanditspotentialitiestocontrolplantpathogenicfungiareview AT rahmanmuhammadziaur trendsinnanotechnologyanditspotentialitiestocontrolplantpathogenicfungiareview AT hossainmdimam trendsinnanotechnologyanditspotentialitiestocontrolplantpathogenicfungiareview |