Cargando…

Metabolite Ratios as Quality Indicators for Pre-Analytical Variation in Serum and EDTA Plasma

In clinical diagnostics and research, blood samples are one of the most frequently used materials. Nevertheless, exploring the chemical composition of human plasma and serum is challenging due to the highly dynamic influence of pre-analytical variation. A prominent example is the variability in pre-...

Descripción completa

Detalles Bibliográficos
Autores principales: Heiling, Sven, Knutti, Nadine, Scherr, Franziska, Geiger, Jörg, Weikert, Juliane, Rose, Michael, Jahns, Roland, Ceglarek, Uta, Scherag, André, Kiehntopf, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465943/
https://www.ncbi.nlm.nih.gov/pubmed/34564454
http://dx.doi.org/10.3390/metabo11090638
Descripción
Sumario:In clinical diagnostics and research, blood samples are one of the most frequently used materials. Nevertheless, exploring the chemical composition of human plasma and serum is challenging due to the highly dynamic influence of pre-analytical variation. A prominent example is the variability in pre-centrifugation delay (time-to-centrifugation; TTC). Quality indicators (QI) reflecting sample TTC are of utmost importance in assessing sample history and resulting sample quality, which is essential for accurate diagnostics and conclusive, reproducible research. In the present study, we subjected human blood to varying TTCs at room temperature prior to processing for plasma or serum preparation. Potential sample QIs were identified by Ultra high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) based metabolite profiling in samples from healthy volunteers (n = 10). Selected QIs were validated by a targeted MS/MS approach in two independent sets of samples from patients (n = 40 and n = 70). In serum, the hypoxanthine/guanosine (HG) and hypoxanthine/inosine (HI) ratios demonstrated high diagnostic performance (Sensitivity/Specificity > 80%) for the discrimination of samples with a TTC > 1 h. We identified several eicosanoids, such as 12-HETE, 15-(S)-HETE, 8-(S)-HETE, 12-oxo-HETE, (±)13-HODE and 12-(S)-HEPE as QIs for a pre-centrifugation delay > 2 h. 12-HETE, 12-oxo-HETE, 8-(S)-HETE, and 12-(S)-HEPE, and the HI- and HG-ratios could be validated in patient samples.