Cargando…
Computation of Kullback–Leibler Divergence in Bayesian Networks
Kullback–Leibler divergence [Formula: see text] is the standard measure of error when we have a true probability distribution p which is approximate with probability distribution q. Its efficient computation is essential in many tasks, as in approximate computation or as a measure of error when lear...
Autores principales: | Moral, Serafín, Cano, Andrés, Gómez-Olmedo, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466032/ https://www.ncbi.nlm.nih.gov/pubmed/34573747 http://dx.doi.org/10.3390/e23091122 |
Ejemplares similares
-
Kullback–Leibler divergence and the Pareto–Exponential approximation
por: Weinberg, G. V.
Publicado: (2016) -
Kullback–Leibler Divergence of a Freely Cooling Granular Gas
por: Megías, Alberto, et al.
Publicado: (2020) -
Kullback Leibler divergence in complete bacterial and phage genomes
por: Akhter, Sajia, et al.
Publicado: (2017) -
A data assimilation framework that uses the Kullback-Leibler divergence
por: Pimentel, Sam, et al.
Publicado: (2021) -
Some Order Preserving Inequalities for Cross Entropy and Kullback–Leibler Divergence
por: Sbert, Mateu, et al.
Publicado: (2018)