Cargando…
The cAMP Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain
Neuronal N-acetylaspartate production appears in the presence of aspartate N-acetyltransferase (NAT8L) and binds acetyl groups from acetyl-CoA with aspartic acid. Further N-acetylaspartate pathways are still being elucidated, although they seem to involve neuron-glia crosstalk. Together with N-acety...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466109/ https://www.ncbi.nlm.nih.gov/pubmed/34573036 http://dx.doi.org/10.3390/antiox10091404 |
_version_ | 1784573048102322176 |
---|---|
author | Kowalski, Robert Pikul, Piotr Lewandowski, Krzysztof Sakowicz-Burkiewicz, Monika Pawełczyk, Tadeusz Zyśk, Marlena |
author_facet | Kowalski, Robert Pikul, Piotr Lewandowski, Krzysztof Sakowicz-Burkiewicz, Monika Pawełczyk, Tadeusz Zyśk, Marlena |
author_sort | Kowalski, Robert |
collection | PubMed |
description | Neuronal N-acetylaspartate production appears in the presence of aspartate N-acetyltransferase (NAT8L) and binds acetyl groups from acetyl-CoA with aspartic acid. Further N-acetylaspartate pathways are still being elucidated, although they seem to involve neuron-glia crosstalk. Together with N-acetylaspartate, NAT8L takes part in oligoglia and astroglia cell maturation, myelin production, and dopamine-dependent brain signaling. Therefore, understanding N-acetylaspartate metabolism is an emergent task in neurobiology. This project used in in vitro and in vivo approaches in order to establish the impact of maturation factors and glial cells on N-acetylaspartate metabolism. Embryonic rat neural stem cells and primary neurons were maturated with either nerve growth factor, trans-retinoic acid or activators of cAMP-dependent protein kinase A (dibutyryl-cAMP, forskolin, theophylline). For in vivo, adult male Wistar rats were injected with theophylline (20 mg/kg b.w.) daily for two or eight weeks. Our studies showed that the N-acetylaspartate metabolism differs between primary neurons and neural stem cell cultures. The presence of glia cells protected N-acetylaspartate metabolism from dramatic changes within the maturation processes, which was impossible in the case of pure primary neuron cultures. In the case of differentiation processes, our data points to dibutyryl-cAMP as the most prominent regulator of N-acetylaspartate metabolism. |
format | Online Article Text |
id | pubmed-8466109 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84661092021-09-27 The cAMP Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain Kowalski, Robert Pikul, Piotr Lewandowski, Krzysztof Sakowicz-Burkiewicz, Monika Pawełczyk, Tadeusz Zyśk, Marlena Antioxidants (Basel) Article Neuronal N-acetylaspartate production appears in the presence of aspartate N-acetyltransferase (NAT8L) and binds acetyl groups from acetyl-CoA with aspartic acid. Further N-acetylaspartate pathways are still being elucidated, although they seem to involve neuron-glia crosstalk. Together with N-acetylaspartate, NAT8L takes part in oligoglia and astroglia cell maturation, myelin production, and dopamine-dependent brain signaling. Therefore, understanding N-acetylaspartate metabolism is an emergent task in neurobiology. This project used in in vitro and in vivo approaches in order to establish the impact of maturation factors and glial cells on N-acetylaspartate metabolism. Embryonic rat neural stem cells and primary neurons were maturated with either nerve growth factor, trans-retinoic acid or activators of cAMP-dependent protein kinase A (dibutyryl-cAMP, forskolin, theophylline). For in vivo, adult male Wistar rats were injected with theophylline (20 mg/kg b.w.) daily for two or eight weeks. Our studies showed that the N-acetylaspartate metabolism differs between primary neurons and neural stem cell cultures. The presence of glia cells protected N-acetylaspartate metabolism from dramatic changes within the maturation processes, which was impossible in the case of pure primary neuron cultures. In the case of differentiation processes, our data points to dibutyryl-cAMP as the most prominent regulator of N-acetylaspartate metabolism. MDPI 2021-09-01 /pmc/articles/PMC8466109/ /pubmed/34573036 http://dx.doi.org/10.3390/antiox10091404 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kowalski, Robert Pikul, Piotr Lewandowski, Krzysztof Sakowicz-Burkiewicz, Monika Pawełczyk, Tadeusz Zyśk, Marlena The cAMP Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain |
title | The cAMP Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain |
title_full | The cAMP Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain |
title_fullStr | The cAMP Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain |
title_full_unstemmed | The cAMP Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain |
title_short | The cAMP Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain |
title_sort | camp inducers modify n-acetylaspartate metabolism in wistar rat brain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466109/ https://www.ncbi.nlm.nih.gov/pubmed/34573036 http://dx.doi.org/10.3390/antiox10091404 |
work_keys_str_mv | AT kowalskirobert thecampinducersmodifynacetylaspartatemetabolisminwistarratbrain AT pikulpiotr thecampinducersmodifynacetylaspartatemetabolisminwistarratbrain AT lewandowskikrzysztof thecampinducersmodifynacetylaspartatemetabolisminwistarratbrain AT sakowiczburkiewiczmonika thecampinducersmodifynacetylaspartatemetabolisminwistarratbrain AT pawełczyktadeusz thecampinducersmodifynacetylaspartatemetabolisminwistarratbrain AT zyskmarlena thecampinducersmodifynacetylaspartatemetabolisminwistarratbrain AT kowalskirobert campinducersmodifynacetylaspartatemetabolisminwistarratbrain AT pikulpiotr campinducersmodifynacetylaspartatemetabolisminwistarratbrain AT lewandowskikrzysztof campinducersmodifynacetylaspartatemetabolisminwistarratbrain AT sakowiczburkiewiczmonika campinducersmodifynacetylaspartatemetabolisminwistarratbrain AT pawełczyktadeusz campinducersmodifynacetylaspartatemetabolisminwistarratbrain AT zyskmarlena campinducersmodifynacetylaspartatemetabolisminwistarratbrain |