Cargando…

Identification of Circular RNAs in the Anterior Pituitary in Rats Treated with GnRH

SIMPLE SUMMARY: The pituitary gland, an important endocrine organ, can secrete a variety of reproductive hormones under the action of hypothalamus-secreted gonadotropin-releasing hormone. Circular RNAs are a class of RNA molecules with stable covalently closed circular structures. In this study, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Hai-Xiang, Yuan, Bao, Su, Meng-Ting, Zheng, Yi, Zhang, Jin-Yu, Han, Dong-Xu, Wang, Hao-Qi, Huang, Yi-Jie, Jiang, Hao, Zhang, Jia-Bao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466137/
https://www.ncbi.nlm.nih.gov/pubmed/34573523
http://dx.doi.org/10.3390/ani11092557
Descripción
Sumario:SIMPLE SUMMARY: The pituitary gland, an important endocrine organ, can secrete a variety of reproductive hormones under the action of hypothalamus-secreted gonadotropin-releasing hormone. Circular RNAs are a class of RNA molecules with stable covalently closed circular structures. In this study, we performed RNA sequencing of GnRH-treated rats to identify differentially expressed circRNAs in the anterior pituitary. The results revealed 1433 related circRNAs, 14 of which were differentially expressed. We predicted targeted relationships between the differentially expressed circRNAs and FSHb-LHb-associated miRNAs. In all, a total of 14 circRNAs were identified that may act on the secretion and regulation of reproductive hormones in GnRH-treated rats. ABSTRACT: The pituitary gland, an important endocrine organ, can secrete a variety of reproductive hormones under the action of hypothalamus-secreted gonadotropin-releasing hormone (GnRH) and plays important roles in animal reproduction. Circular RNAs (circRNAs) are a class of RNA molecules with stable covalently closed circular structures. CircRNAs are equipped with miRNA response elements (MREs), which can regulate the expression of target genes by competitively binding miRNAs. However, whether the expression levels of circRNAs in the pituitary gland change under the action of GnRH and whether such changes can further affect the secretion of reproductive hormones are still unclear. In this study, we performed RNA sequencing (RNA-Seq) of GnRH-treated rats to identify differentially expressed circRNAs. The results revealed 1433 related circRNAs, 14 of which were differentially expressed. In addition, we randomly selected five differentially expressed circRNAs and tested their relative expression levels by RT-qPCR, the results of which were consistent with the RNA sequencing results. Finally, we predicted targeted relationships between the differentially expressed circRNAs and FSHb-LHb-associated miRNAs. In all, a total of 14 circRNAs were identified that may act on the secretion and regulation of reproductive hormones in GnRH-treated rats. Our expression profiles of circRNAs in the anterior pituitaries of rats treated with GnRH can provide insights into the roles of circRNAs in mammalian development and reproduction.