Cargando…
Forecasting Erroneous Neural Machine Translation of Disease Symptoms: Development of Bayesian Probabilistic Classifiers for Cross-Lingual Health Translation
Background: Machine translation (MT) technologies have increasing applications in healthcare. Despite their convenience, cost-effectiveness, and constantly improved accuracy, research shows that the use of MT tools in medical or healthcare settings poses risks to vulnerable populations. Objectives:...
Autores principales: | Ji, Meng, Xie, Wenxiu, Huang, Riliu, Qian, Xiaobo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466164/ https://www.ncbi.nlm.nih.gov/pubmed/34574795 http://dx.doi.org/10.3390/ijerph18189873 |
Ejemplares similares
-
Forecasting the Suitability of Online Mental Health Information for Effective Self-Care Developing Machine Learning Classifiers Using Natural Language Features
por: Ji, Meng, et al.
Publicado: (2021) -
Predicting Risks of Machine Translations of Public Health Resources by Developing Interpretable Machine Learning Classifiers
por: Xie, Wenxiu, et al.
Publicado: (2021) -
Detecting Symptom Errors in Neural Machine Translation of Patient Health Information on Depressive Disorders: Developing Interpretable Bayesian Machine Learning Classifiers
por: Xie, Wenxiu, et al.
Publicado: (2021) -
Automatic Diagnosis of Mental Healthcare Information Actionability: Developing Binary Classifiers
por: Ji, Meng, et al.
Publicado: (2021) -
Probabilistic Prediction of Nonadherence to Psychiatric Disorder Medication from Mental Health Forum Data: Developing and Validating Bayesian Machine Learning Classifiers
por: Ji, Meng, et al.
Publicado: (2022)