Cargando…

Performance Analysis and Optimization of a High-Temperature PEMFC Vehicle Based on Particle Swarm Optimization Algorithm

In this paper, a high-temperature proton exchange membrane fuel cell (HT-PEMFC) model using the polybenzimidazole membrane doped with phosphoric acid molecules is developed based on finite time thermodynamics, considering various polarization losses and losses caused by leakage current. The mathemat...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yanju, Ma, Zheshu, Zheng, Meng, Li, Dongxu, Lu, Zhanghao, Xu, Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466202/
https://www.ncbi.nlm.nih.gov/pubmed/34564508
http://dx.doi.org/10.3390/membranes11090691
Descripción
Sumario:In this paper, a high-temperature proton exchange membrane fuel cell (HT-PEMFC) model using the polybenzimidazole membrane doped with phosphoric acid molecules is developed based on finite time thermodynamics, considering various polarization losses and losses caused by leakage current. The mathematical expressions of the output power density and efficiency of the HT-PEMFC are deduced. The reliability of the model is verified by the experimental data. The effects of operating parameters and design parameters on the output performance of the HT-PEMFC are further analyzed. The particle swarm optimization (PSO) algorithm is used for the multi-objective optimization of the power density and efficiency of the HT-PEMFC. The results show that the output performance of the optimized HT-PEMFC is improved. Then, according to the different output performance of the low-temperature proton exchange membrane fuel cell (LT-PEMFC), HT-PEMFC, and optimized HT-PEMFC, different design schemes are provided for a fuel cell vehicle (FCV) powertrain. Simulation tests are conducted under different driving cycles, and the results show that the FCV with the optimized HT-PEMFC is more efficient and consumes less hydrogen.