Cargando…
Two Paralogous Gb3/CD77 Synthases in Birds Show Different Preferences for Their Glycoprotein and Glycosphingolipid Substrates
Most glycosyltransferases show remarkable gross and fine substrate specificity, which is reflected in the old one enzyme-one linkage paradigm. While human Gb3/CD77 synthase is a glycosyltransferase that synthesizes the Galα1→4Gal moiety mainly on glycosphingolipids, its pigeon homolog prefers glycop...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466213/ https://www.ncbi.nlm.nih.gov/pubmed/34575935 http://dx.doi.org/10.3390/ijms22189761 |
Sumario: | Most glycosyltransferases show remarkable gross and fine substrate specificity, which is reflected in the old one enzyme-one linkage paradigm. While human Gb3/CD77 synthase is a glycosyltransferase that synthesizes the Galα1→4Gal moiety mainly on glycosphingolipids, its pigeon homolog prefers glycoproteins as acceptors. In this study, we characterized two Gb3/CD77 synthase paralogs found in pigeons (Columba livia). We evaluated their specificities in transfected human teratocarcinoma 2102Ep cells by flow cytofluorometry, Western blotting, high-performance thin-layer chromatography, mass spectrometry and metabolic labelling with (14)C-galactose. We found that the previously described pigeon Gb3/CD77 synthase (called P) can use predominately glycoproteins as acceptors, while its paralog (called M), which we serendipitously discovered while conducting this study, efficiently synthesizes Galα1→4Gal caps on both glycoproteins and glycosphingolipids. These two paralogs may underlie the difference in expression profiles of Galα1→4Gal-terminated glycoconjugates between neoavians and mammals. |
---|