Cargando…

A Diamond-Based Dose-per-Pulse X-ray Detector for Radiation Therapy

One of the goals of modern dynamic radiotherapy treatments is to deliver high-dose values in the shortest irradiation time possible. In such a context, fast X-ray detectors and reliable front-end readout electronics for beam diagnostics are crucial to meet the necessary quality assurance requirement...

Descripción completa

Detalles Bibliográficos
Autores principales: Pettinato, Sara, Girolami, Marco, Olivieri, Riccardo, Stravato, Antonella, Caruso, Cristina, Salvatori, Stefano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466252/
https://www.ncbi.nlm.nih.gov/pubmed/34576426
http://dx.doi.org/10.3390/ma14185203
Descripción
Sumario:One of the goals of modern dynamic radiotherapy treatments is to deliver high-dose values in the shortest irradiation time possible. In such a context, fast X-ray detectors and reliable front-end readout electronics for beam diagnostics are crucial to meet the necessary quality assurance requirements of care plans. This work describes a diamond-based detection system able to acquire and process the dose delivered by every single pulse sourced by a linear accelerator (LINAC) generating 6-MV X-ray beams. The proposed system is able to measure the intensity of X-ray pulses in a limited integration period around each pulse, thus reducing the inaccuracy induced by unnecessarily long acquisition times. Detector sensitivity under 6-MV X-photons in the 0.1–10 Gy dose range was measured to be 302.2 nC/Gy at a bias voltage of 10 V. Pulse-by-pulse measurements returned a charge-per-pulse value of 84.68 pC, in excellent agreement with the value estimated (but not directly measured) with a commercial electrometer operating in a continuous integration mode. Significantly, by intrinsically holding the acquired signal, the proposed system enables signal processing even in the millisecond period between two consecutive pulses, thus allowing for effective real-time dose-per-pulse monitoring.