Cargando…

Metagenomic Analyses of Plant Growth-Promoting and Carbon-Cycling Genes in Maize Rhizosphere Soils with Distinct Land-Use and Management Histories

Many studies have shown that the maize rhizosphere comprises several plant growth-promoting microbes, but there is little or no study on the effects of land-use and management histories on microbial functional gene diversity in the maize rhizosphere soils in Africa. Analyzing microbial genes in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Chukwuneme, Chinenyenwa Fortune, Ayangbenro, Ayansina Segun, Babalola, Olubukola Oluranti
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466292/
https://www.ncbi.nlm.nih.gov/pubmed/34573413
http://dx.doi.org/10.3390/genes12091431
_version_ 1784573098474864640
author Chukwuneme, Chinenyenwa Fortune
Ayangbenro, Ayansina Segun
Babalola, Olubukola Oluranti
author_facet Chukwuneme, Chinenyenwa Fortune
Ayangbenro, Ayansina Segun
Babalola, Olubukola Oluranti
author_sort Chukwuneme, Chinenyenwa Fortune
collection PubMed
description Many studies have shown that the maize rhizosphere comprises several plant growth-promoting microbes, but there is little or no study on the effects of land-use and management histories on microbial functional gene diversity in the maize rhizosphere soils in Africa. Analyzing microbial genes in the rhizosphere of plants, especially those associated with plant growth promotion and carbon cycling, is important for improving soil fertility and crop productivity. Here, we provide a comparative analysis of microbial genes present in the rhizosphere samples of two maize fields with different agricultural histories using shotgun metagenomics. Genes involved in the nutrient mobilization, including nifA, fixJ, norB, pstA, kefA and B, and ktrB were significantly more abundant (α = 0.05) in former grassland (F1) rhizosphere soils. Among the carbon-cycling genes, the abundance of 12 genes, including all those involved in the degradation of methane were more significant (α = 0.05) in the F1 soils, whereas only five genes were significantly more abundant in the F2 soils. α-diversity indices were different across the samples and significant differences were observed in the β diversity of plant growth-promoting and carbon-cycling genes between the fields (ANOSIM, p = 0.01 and R = 0.52). Nitrate-nitrogen (N-NO(3)) was the most influential physicochemical parameter (p = 0.05 and contribution = 31.3%) that affected the distribution of the functional genes across the samples. The results indicate that land-use and management histories impact the composition and diversity of plant growth-promoting and carbon-cycling genes in the plant rhizosphere. The study widens our understanding of the effects of anthropogenic activities on plant health and major biogeochemical processes in soils.
format Online
Article
Text
id pubmed-8466292
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84662922021-09-27 Metagenomic Analyses of Plant Growth-Promoting and Carbon-Cycling Genes in Maize Rhizosphere Soils with Distinct Land-Use and Management Histories Chukwuneme, Chinenyenwa Fortune Ayangbenro, Ayansina Segun Babalola, Olubukola Oluranti Genes (Basel) Article Many studies have shown that the maize rhizosphere comprises several plant growth-promoting microbes, but there is little or no study on the effects of land-use and management histories on microbial functional gene diversity in the maize rhizosphere soils in Africa. Analyzing microbial genes in the rhizosphere of plants, especially those associated with plant growth promotion and carbon cycling, is important for improving soil fertility and crop productivity. Here, we provide a comparative analysis of microbial genes present in the rhizosphere samples of two maize fields with different agricultural histories using shotgun metagenomics. Genes involved in the nutrient mobilization, including nifA, fixJ, norB, pstA, kefA and B, and ktrB were significantly more abundant (α = 0.05) in former grassland (F1) rhizosphere soils. Among the carbon-cycling genes, the abundance of 12 genes, including all those involved in the degradation of methane were more significant (α = 0.05) in the F1 soils, whereas only five genes were significantly more abundant in the F2 soils. α-diversity indices were different across the samples and significant differences were observed in the β diversity of plant growth-promoting and carbon-cycling genes between the fields (ANOSIM, p = 0.01 and R = 0.52). Nitrate-nitrogen (N-NO(3)) was the most influential physicochemical parameter (p = 0.05 and contribution = 31.3%) that affected the distribution of the functional genes across the samples. The results indicate that land-use and management histories impact the composition and diversity of plant growth-promoting and carbon-cycling genes in the plant rhizosphere. The study widens our understanding of the effects of anthropogenic activities on plant health and major biogeochemical processes in soils. MDPI 2021-09-17 /pmc/articles/PMC8466292/ /pubmed/34573413 http://dx.doi.org/10.3390/genes12091431 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chukwuneme, Chinenyenwa Fortune
Ayangbenro, Ayansina Segun
Babalola, Olubukola Oluranti
Metagenomic Analyses of Plant Growth-Promoting and Carbon-Cycling Genes in Maize Rhizosphere Soils with Distinct Land-Use and Management Histories
title Metagenomic Analyses of Plant Growth-Promoting and Carbon-Cycling Genes in Maize Rhizosphere Soils with Distinct Land-Use and Management Histories
title_full Metagenomic Analyses of Plant Growth-Promoting and Carbon-Cycling Genes in Maize Rhizosphere Soils with Distinct Land-Use and Management Histories
title_fullStr Metagenomic Analyses of Plant Growth-Promoting and Carbon-Cycling Genes in Maize Rhizosphere Soils with Distinct Land-Use and Management Histories
title_full_unstemmed Metagenomic Analyses of Plant Growth-Promoting and Carbon-Cycling Genes in Maize Rhizosphere Soils with Distinct Land-Use and Management Histories
title_short Metagenomic Analyses of Plant Growth-Promoting and Carbon-Cycling Genes in Maize Rhizosphere Soils with Distinct Land-Use and Management Histories
title_sort metagenomic analyses of plant growth-promoting and carbon-cycling genes in maize rhizosphere soils with distinct land-use and management histories
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466292/
https://www.ncbi.nlm.nih.gov/pubmed/34573413
http://dx.doi.org/10.3390/genes12091431
work_keys_str_mv AT chukwunemechinenyenwafortune metagenomicanalysesofplantgrowthpromotingandcarboncyclinggenesinmaizerhizospheresoilswithdistinctlanduseandmanagementhistories
AT ayangbenroayansinasegun metagenomicanalysesofplantgrowthpromotingandcarboncyclinggenesinmaizerhizospheresoilswithdistinctlanduseandmanagementhistories
AT babalolaolubukolaoluranti metagenomicanalysesofplantgrowthpromotingandcarboncyclinggenesinmaizerhizospheresoilswithdistinctlanduseandmanagementhistories