Cargando…
SARS-CoV-2: Origin, Intermediate Host and Allergenicity Features and Hypotheses
The goal of this study is to investigate the probable intermediate hosts and the allergenicity of the notorious virus SARS-CoV-2 to understand how this virus emerged. The phylogenetic analysis of the virus spike proteins indicates that SARS-CoV-2 falls into various small subclades that include a bat...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466535/ https://www.ncbi.nlm.nih.gov/pubmed/34574906 http://dx.doi.org/10.3390/healthcare9091132 |
_version_ | 1784573165971701760 |
---|---|
author | Huang, Yuyi Xie, Junmou Guo, Yuhe Sun, Weimin He, Ying Liu, Kequn Yan, Jie Tao, Ailin Zhong, Nanshan |
author_facet | Huang, Yuyi Xie, Junmou Guo, Yuhe Sun, Weimin He, Ying Liu, Kequn Yan, Jie Tao, Ailin Zhong, Nanshan |
author_sort | Huang, Yuyi |
collection | PubMed |
description | The goal of this study is to investigate the probable intermediate hosts and the allergenicity of the notorious virus SARS-CoV-2 to understand how this virus emerged. The phylogenetic analysis of the virus spike proteins indicates that SARS-CoV-2 falls into various small subclades that include a bat coronavirus RaTG13, suggesting bats as a likely natural origin. Refined alignment of the spike protein in NCBI found several fragments that are specific to SARS-CoV-2 and/or SARS-CoV are specific to Rattus norvegicus and/or Mus musculus, suggesting that rodents are the intermediate reservoir of SARS-CoV-2 and SARS-CoV. To evaluate the allergenicity values, the binding affinities of human leukocyte antigen (HLA) class I or II molecules with the spike proteins were calculated, and the results showed that both SARS-CoV-2 and SARS-CoV are predicted to bind to fourteen HLA class I and II molecules with super-high HLA allele-peptide affinities. The infection rate of individuals who have HLA alleles with very high binding affinities who might become infected and develop into refractory patients if there were no medical or non-medical interventions is about 7.36% and 4.78% of Chinese and Americans, respectively. Extremely high temperature and exceptionally low precipitation, the common climate factors between the outbreak sites of COVID-19 in Wuhan in 2019 and SARS in Guangdong in 2002, might have promoted coronavirus evolution into more virulent forms. Our hypothesis suggests that early immunization with an allergenically-engineered virus, in combination with continued surveillance of meteorological factors and viral mutations, may be one of the most powerful prophylactic modalities to fight this virus. |
format | Online Article Text |
id | pubmed-8466535 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84665352021-09-27 SARS-CoV-2: Origin, Intermediate Host and Allergenicity Features and Hypotheses Huang, Yuyi Xie, Junmou Guo, Yuhe Sun, Weimin He, Ying Liu, Kequn Yan, Jie Tao, Ailin Zhong, Nanshan Healthcare (Basel) Article The goal of this study is to investigate the probable intermediate hosts and the allergenicity of the notorious virus SARS-CoV-2 to understand how this virus emerged. The phylogenetic analysis of the virus spike proteins indicates that SARS-CoV-2 falls into various small subclades that include a bat coronavirus RaTG13, suggesting bats as a likely natural origin. Refined alignment of the spike protein in NCBI found several fragments that are specific to SARS-CoV-2 and/or SARS-CoV are specific to Rattus norvegicus and/or Mus musculus, suggesting that rodents are the intermediate reservoir of SARS-CoV-2 and SARS-CoV. To evaluate the allergenicity values, the binding affinities of human leukocyte antigen (HLA) class I or II molecules with the spike proteins were calculated, and the results showed that both SARS-CoV-2 and SARS-CoV are predicted to bind to fourteen HLA class I and II molecules with super-high HLA allele-peptide affinities. The infection rate of individuals who have HLA alleles with very high binding affinities who might become infected and develop into refractory patients if there were no medical or non-medical interventions is about 7.36% and 4.78% of Chinese and Americans, respectively. Extremely high temperature and exceptionally low precipitation, the common climate factors between the outbreak sites of COVID-19 in Wuhan in 2019 and SARS in Guangdong in 2002, might have promoted coronavirus evolution into more virulent forms. Our hypothesis suggests that early immunization with an allergenically-engineered virus, in combination with continued surveillance of meteorological factors and viral mutations, may be one of the most powerful prophylactic modalities to fight this virus. MDPI 2021-08-30 /pmc/articles/PMC8466535/ /pubmed/34574906 http://dx.doi.org/10.3390/healthcare9091132 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Huang, Yuyi Xie, Junmou Guo, Yuhe Sun, Weimin He, Ying Liu, Kequn Yan, Jie Tao, Ailin Zhong, Nanshan SARS-CoV-2: Origin, Intermediate Host and Allergenicity Features and Hypotheses |
title | SARS-CoV-2: Origin, Intermediate Host and Allergenicity Features and Hypotheses |
title_full | SARS-CoV-2: Origin, Intermediate Host and Allergenicity Features and Hypotheses |
title_fullStr | SARS-CoV-2: Origin, Intermediate Host and Allergenicity Features and Hypotheses |
title_full_unstemmed | SARS-CoV-2: Origin, Intermediate Host and Allergenicity Features and Hypotheses |
title_short | SARS-CoV-2: Origin, Intermediate Host and Allergenicity Features and Hypotheses |
title_sort | sars-cov-2: origin, intermediate host and allergenicity features and hypotheses |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466535/ https://www.ncbi.nlm.nih.gov/pubmed/34574906 http://dx.doi.org/10.3390/healthcare9091132 |
work_keys_str_mv | AT huangyuyi sarscov2originintermediatehostandallergenicityfeaturesandhypotheses AT xiejunmou sarscov2originintermediatehostandallergenicityfeaturesandhypotheses AT guoyuhe sarscov2originintermediatehostandallergenicityfeaturesandhypotheses AT sunweimin sarscov2originintermediatehostandallergenicityfeaturesandhypotheses AT heying sarscov2originintermediatehostandallergenicityfeaturesandhypotheses AT liukequn sarscov2originintermediatehostandallergenicityfeaturesandhypotheses AT yanjie sarscov2originintermediatehostandallergenicityfeaturesandhypotheses AT taoailin sarscov2originintermediatehostandallergenicityfeaturesandhypotheses AT zhongnanshan sarscov2originintermediatehostandallergenicityfeaturesandhypotheses |