Cargando…
Machine Learning for Process Monitoring and Control of Hot-Melt Extrusion: Current State of the Art and Future Directions
In the last few decades, hot-melt extrusion (HME) has emerged as a rapidly growing technology in the pharmaceutical industry, due to its various advantages over other fabrication routes for drug delivery systems. After the introduction of the ‘quality by design’ (QbD) approach by the Food and Drug A...
Autores principales: | Munir, Nimra, Nugent, Michael, Whitaker, Darren, McAfee, Marion |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466632/ https://www.ncbi.nlm.nih.gov/pubmed/34575508 http://dx.doi.org/10.3390/pharmaceutics13091432 |
Ejemplares similares
-
Interpretable Machine Learning Methods for Monitoring Polymer Degradation in Extrusion of Polylactic Acid
por: Munir, Nimra, et al.
Publicado: (2023) -
Drug-Eluting Sutures by Hot-Melt Extrusion: Current Trends and Future Potentials
por: Khalid, Garba M., et al.
Publicado: (2023) -
Hot Melt Extrusion: Highlighting Physicochemical Factors to Be Investigated While Designing and Optimizing a Hot Melt Extrusion Process
por: Censi, Roberta, et al.
Publicado: (2018) -
Predicting Throughput and Melt Temperature in Pharmaceutical Hot Melt Extrusion
por: Gottschalk, Tobias, et al.
Publicado: (2022) -
Predicting Residence Time and Melt Temperature in Pharmaceutical Hot Melt Extrusion
por: Winck, Judith, et al.
Publicado: (2023)