Cargando…

Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers

Energy storage is one of the most effective ways to increase energy savings and efficiency of heating and air conditioning systems. Phase change materials (PCMs) are increasingly used in latent heat thermal energy storage (LHTES) systems to increase their capacity. In such systems, costs are a very...

Descripción completa

Detalles Bibliográficos
Autores principales: Rolka, Paulina, Karwacki, Jaroslaw, Jaworski, Maciej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466772/
https://www.ncbi.nlm.nih.gov/pubmed/34576396
http://dx.doi.org/10.3390/ma14185172
_version_ 1784573225305374720
author Rolka, Paulina
Karwacki, Jaroslaw
Jaworski, Maciej
author_facet Rolka, Paulina
Karwacki, Jaroslaw
Jaworski, Maciej
author_sort Rolka, Paulina
collection PubMed
description Energy storage is one of the most effective ways to increase energy savings and efficiency of heating and air conditioning systems. Phase change materials (PCMs) are increasingly used in latent heat thermal energy storage (LHTES) systems to increase their capacity. In such systems, costs are a very important factor of viability so the typical heat transfer elements like fin-and-tube heat exchangers are used to construct the LHTES. The problem of this approach is a possibility of corrosion of metals in contact with PCM that shortens the life cycle of LHTES. Therefore, the main objective of this work is an experimental study of the compatibility of metals typically used in fin-and-tube heat exchangers (copper and aluminum) with three commercially available organic PCMs (RT15, RT18HC, and RT22HC). Compatibility of PCMs with copper and aluminum was tested for a period of approximately two months, during which a total of 35 heating and cooling cycles were carried out, each with a complete phase transition of the tested materials. In the course of the tests it was assessed whether the PCM caused corrosion of the tested metals. The evaluation was based on the gravimetric method, calculation of corrosion rate, and visual observations and measurements of the features on the metal sample’s surface using optical microscope. It was determined that RT15, RT18 HC, and RT22 HC show low corrosion rates for aluminum and copper samples. The visual tests indicate that there was no change in the PCM solutions during the tests, only a sediment was observed for the samples with the combination of copper and aluminum. Microscopic examination of the surface of the samples did not show any significant surface changes, except for the aluminum samples, on the surface of which local microdefects were observed. It follows from the present results that copper and aluminum can be used to design the heat transfer surface in contact with the chosen PCMs.
format Online
Article
Text
id pubmed-8466772
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84667722021-09-27 Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers Rolka, Paulina Karwacki, Jaroslaw Jaworski, Maciej Materials (Basel) Article Energy storage is one of the most effective ways to increase energy savings and efficiency of heating and air conditioning systems. Phase change materials (PCMs) are increasingly used in latent heat thermal energy storage (LHTES) systems to increase their capacity. In such systems, costs are a very important factor of viability so the typical heat transfer elements like fin-and-tube heat exchangers are used to construct the LHTES. The problem of this approach is a possibility of corrosion of metals in contact with PCM that shortens the life cycle of LHTES. Therefore, the main objective of this work is an experimental study of the compatibility of metals typically used in fin-and-tube heat exchangers (copper and aluminum) with three commercially available organic PCMs (RT15, RT18HC, and RT22HC). Compatibility of PCMs with copper and aluminum was tested for a period of approximately two months, during which a total of 35 heating and cooling cycles were carried out, each with a complete phase transition of the tested materials. In the course of the tests it was assessed whether the PCM caused corrosion of the tested metals. The evaluation was based on the gravimetric method, calculation of corrosion rate, and visual observations and measurements of the features on the metal sample’s surface using optical microscope. It was determined that RT15, RT18 HC, and RT22 HC show low corrosion rates for aluminum and copper samples. The visual tests indicate that there was no change in the PCM solutions during the tests, only a sediment was observed for the samples with the combination of copper and aluminum. Microscopic examination of the surface of the samples did not show any significant surface changes, except for the aluminum samples, on the surface of which local microdefects were observed. It follows from the present results that copper and aluminum can be used to design the heat transfer surface in contact with the chosen PCMs. MDPI 2021-09-09 /pmc/articles/PMC8466772/ /pubmed/34576396 http://dx.doi.org/10.3390/ma14185172 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Rolka, Paulina
Karwacki, Jaroslaw
Jaworski, Maciej
Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers
title Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers
title_full Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers
title_fullStr Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers
title_full_unstemmed Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers
title_short Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers
title_sort compatibility tests between three commercially available organic pcms and metals typically used in fin-and-tube heat exchangers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466772/
https://www.ncbi.nlm.nih.gov/pubmed/34576396
http://dx.doi.org/10.3390/ma14185172
work_keys_str_mv AT rolkapaulina compatibilitytestsbetweenthreecommerciallyavailableorganicpcmsandmetalstypicallyusedinfinandtubeheatexchangers
AT karwackijaroslaw compatibilitytestsbetweenthreecommerciallyavailableorganicpcmsandmetalstypicallyusedinfinandtubeheatexchangers
AT jaworskimaciej compatibilitytestsbetweenthreecommerciallyavailableorganicpcmsandmetalstypicallyusedinfinandtubeheatexchangers