Cargando…
Screening and Characterization of Two Extracellular Polysaccharide-Producing Bacteria from the Biocrust of the Mu Us Desert
The extracellular polysaccharide (EPS) matrix embedding microbial cells and soil particles plays an important role in the development of biological soil crusts (BSCs), which is widely recognized as beneficial to soil fertility in dryland worldwide. This study examined the EPS-producing bacterial str...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466918/ https://www.ncbi.nlm.nih.gov/pubmed/34576992 http://dx.doi.org/10.3390/molecules26185521 |
_version_ | 1784573263540649984 |
---|---|
author | Xue, Zhanfang Zhao, Shuting Bold, Nomin Zhang, Jianguo Hu, Zhimin Hu, Xiaofeng Gao, Ying Chen, Shaolin Wei, Yahong |
author_facet | Xue, Zhanfang Zhao, Shuting Bold, Nomin Zhang, Jianguo Hu, Zhimin Hu, Xiaofeng Gao, Ying Chen, Shaolin Wei, Yahong |
author_sort | Xue, Zhanfang |
collection | PubMed |
description | The extracellular polysaccharide (EPS) matrix embedding microbial cells and soil particles plays an important role in the development of biological soil crusts (BSCs), which is widely recognized as beneficial to soil fertility in dryland worldwide. This study examined the EPS-producing bacterial strains YL24-1 and YL24-3 isolated from sandy soil in the Mu Us Desert in Yulin, Shaanxi province, China. The strains YL24-1 and YL24-3 were able to efficiently produce EPS; the levels of EPS were determined to be 257.22 μg/mL and 83.41 μg/mL in cultures grown for 72 h and were identified as Sinorhizobium meliloti and Pedobacter sp., respectively. When the strain YL24-3 was compared to Pedobacter yulinensis YL28-9(T) using 16S rRNA gene sequencing, the resemblance was 98.6% and the strain was classified as Pedobacter sp. using physiological and biochemical analysis. Furthermore, strain YL24-3 was also identified as a subspecies of Pedobacter yulinensis YL28-9(T) on the basis of DNA–DNA hybridization and polar lipid analysis compared with YL28-9(T). On the basis of the EPS-related genes of relevant strains in the GenBank, several EPS-related genes were cloned and sequenced in the strain YL24-1, including those potentially involved in EPS synthesis, assembly, transport, and secretion. Given the differences of the strains in EPS production, it is possible that the differences in gene sequences result in variations in the enzyme/protein activities for EPS biosynthesis, assembly, transport, and secretion. The results provide preliminary evidence of various contributions of bacterial strains to the formation of EPS matrix in the Mu Us Desert. |
format | Online Article Text |
id | pubmed-8466918 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84669182021-09-27 Screening and Characterization of Two Extracellular Polysaccharide-Producing Bacteria from the Biocrust of the Mu Us Desert Xue, Zhanfang Zhao, Shuting Bold, Nomin Zhang, Jianguo Hu, Zhimin Hu, Xiaofeng Gao, Ying Chen, Shaolin Wei, Yahong Molecules Article The extracellular polysaccharide (EPS) matrix embedding microbial cells and soil particles plays an important role in the development of biological soil crusts (BSCs), which is widely recognized as beneficial to soil fertility in dryland worldwide. This study examined the EPS-producing bacterial strains YL24-1 and YL24-3 isolated from sandy soil in the Mu Us Desert in Yulin, Shaanxi province, China. The strains YL24-1 and YL24-3 were able to efficiently produce EPS; the levels of EPS were determined to be 257.22 μg/mL and 83.41 μg/mL in cultures grown for 72 h and were identified as Sinorhizobium meliloti and Pedobacter sp., respectively. When the strain YL24-3 was compared to Pedobacter yulinensis YL28-9(T) using 16S rRNA gene sequencing, the resemblance was 98.6% and the strain was classified as Pedobacter sp. using physiological and biochemical analysis. Furthermore, strain YL24-3 was also identified as a subspecies of Pedobacter yulinensis YL28-9(T) on the basis of DNA–DNA hybridization and polar lipid analysis compared with YL28-9(T). On the basis of the EPS-related genes of relevant strains in the GenBank, several EPS-related genes were cloned and sequenced in the strain YL24-1, including those potentially involved in EPS synthesis, assembly, transport, and secretion. Given the differences of the strains in EPS production, it is possible that the differences in gene sequences result in variations in the enzyme/protein activities for EPS biosynthesis, assembly, transport, and secretion. The results provide preliminary evidence of various contributions of bacterial strains to the formation of EPS matrix in the Mu Us Desert. MDPI 2021-09-11 /pmc/articles/PMC8466918/ /pubmed/34576992 http://dx.doi.org/10.3390/molecules26185521 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xue, Zhanfang Zhao, Shuting Bold, Nomin Zhang, Jianguo Hu, Zhimin Hu, Xiaofeng Gao, Ying Chen, Shaolin Wei, Yahong Screening and Characterization of Two Extracellular Polysaccharide-Producing Bacteria from the Biocrust of the Mu Us Desert |
title | Screening and Characterization of Two Extracellular Polysaccharide-Producing Bacteria from the Biocrust of the Mu Us Desert |
title_full | Screening and Characterization of Two Extracellular Polysaccharide-Producing Bacteria from the Biocrust of the Mu Us Desert |
title_fullStr | Screening and Characterization of Two Extracellular Polysaccharide-Producing Bacteria from the Biocrust of the Mu Us Desert |
title_full_unstemmed | Screening and Characterization of Two Extracellular Polysaccharide-Producing Bacteria from the Biocrust of the Mu Us Desert |
title_short | Screening and Characterization of Two Extracellular Polysaccharide-Producing Bacteria from the Biocrust of the Mu Us Desert |
title_sort | screening and characterization of two extracellular polysaccharide-producing bacteria from the biocrust of the mu us desert |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466918/ https://www.ncbi.nlm.nih.gov/pubmed/34576992 http://dx.doi.org/10.3390/molecules26185521 |
work_keys_str_mv | AT xuezhanfang screeningandcharacterizationoftwoextracellularpolysaccharideproducingbacteriafromthebiocrustofthemuusdesert AT zhaoshuting screeningandcharacterizationoftwoextracellularpolysaccharideproducingbacteriafromthebiocrustofthemuusdesert AT boldnomin screeningandcharacterizationoftwoextracellularpolysaccharideproducingbacteriafromthebiocrustofthemuusdesert AT zhangjianguo screeningandcharacterizationoftwoextracellularpolysaccharideproducingbacteriafromthebiocrustofthemuusdesert AT huzhimin screeningandcharacterizationoftwoextracellularpolysaccharideproducingbacteriafromthebiocrustofthemuusdesert AT huxiaofeng screeningandcharacterizationoftwoextracellularpolysaccharideproducingbacteriafromthebiocrustofthemuusdesert AT gaoying screeningandcharacterizationoftwoextracellularpolysaccharideproducingbacteriafromthebiocrustofthemuusdesert AT chenshaolin screeningandcharacterizationoftwoextracellularpolysaccharideproducingbacteriafromthebiocrustofthemuusdesert AT weiyahong screeningandcharacterizationoftwoextracellularpolysaccharideproducingbacteriafromthebiocrustofthemuusdesert |