Cargando…
Anomaly detection in genomic catalogues using unsupervised multi-view autoencoders
BACKGROUND: Accurate identification of Transcriptional Regulator binding locations is essential for analysis of genomic regions, including Cis Regulatory Elements. The customary NGS approaches, predominantly ChIP-Seq, can be obscured by data anomalies and biases which are difficult to detect without...
Autores principales: | Ferré, Quentin, Chèneby, Jeanne, Puthier, Denis, Capponi, Cécile, Ballester, Benoît |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467021/ https://www.ncbi.nlm.nih.gov/pubmed/34563116 http://dx.doi.org/10.1186/s12859-021-04359-2 |
Ejemplares similares
-
IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection
por: Atkinson, Oliver, et al.
Publicado: (2022) -
OLOGRAM-MODL: mining enriched n-wise combinations of genomic features with Monte Carlo and dictionary learning
por: Ferré, Quentin, et al.
Publicado: (2021) -
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020) -
Autoencoders for anomaly detection at LHCb
por: Radziunas Salinas, Yago
Publicado: (2022) -
ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks
por: Hu, Chao, et al.
Publicado: (2023)