Cargando…
ZmWRKY104 Transcription Factor Phosphorylated by ZmMPK6 Functioning in ABA-Induced Antioxidant Defense and Enhance Drought Tolerance in Maize
SIMPLE SUMMARY: Current knowledge about the downstream substrate proteins of MAPKs is still limited. Our study screened a new WRKY IIa transcription factor as the substrate protein of ZmMPK6, and its phosphorylation at Thr-59 is critical to the role of ZmWRKY104 in ABA-induced antioxidant defense. M...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467104/ https://www.ncbi.nlm.nih.gov/pubmed/34571770 http://dx.doi.org/10.3390/biology10090893 |
_version_ | 1784573311640928256 |
---|---|
author | Zhao, Lili Yan, Jingwei Xiang, Yang Sun, Yue Zhang, Aying |
author_facet | Zhao, Lili Yan, Jingwei Xiang, Yang Sun, Yue Zhang, Aying |
author_sort | Zhao, Lili |
collection | PubMed |
description | SIMPLE SUMMARY: Current knowledge about the downstream substrate proteins of MAPKs is still limited. Our study screened a new WRKY IIa transcription factor as the substrate protein of ZmMPK6, and its phosphorylation at Thr-59 is critical to the role of ZmWRKY104 in ABA-induced antioxidant defense. Moreover, overexpression ZmWRKY104 in maize enhances the drought tolerance of transgenic plants. These findings define a mechanism for the function of ZmWRKY104 phosphorylated by ZmMPK6 in ABA-induced antioxidant defense and drought tolerance. ABSTRACT: Mitogen-activated protein kinase (MAPK) cascades are primary signaling pathways involved in various signaling pathways triggered by abiotic and biotic stresses in plants. The downstream substrate proteins of MAPKs in maize, however, are still limited. Here, we screened a WRKY IIa transcription factor (TF) in maize (Zea mays L.), ZmWRKY104, and found that it is a substrate of ZmMPK6. ZmWRKY104 physically interacts with ZmMPK6 in vitro and in vivo. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis results showed that threonine-59 (Thr-59, T59) was the major phosphorylation site of ZmWRKY104 by ZmMPK6. Subcellular localization analysis suggested that ZmWRKY104 acts in the nucleus and that ZmMPK6 acts in the nucleus and cytoplasmic membrane in the cytosol. Functional analysis revealed that the role of ZmWRKY104 in ABA-induced antioxidant defense depends on ZmMPK6. Moreover, overexpression of ZmWRKY104 in maize can enhance drought tolerance and relieve drought-induced oxidative damage in transgenic lines. The above results help define the mechanism of the function of ZmWRKY104 phosphorylated by ZmMPK6 in ABA-induced antioxidant defense and drought tolerance in maize. |
format | Online Article Text |
id | pubmed-8467104 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84671042021-09-27 ZmWRKY104 Transcription Factor Phosphorylated by ZmMPK6 Functioning in ABA-Induced Antioxidant Defense and Enhance Drought Tolerance in Maize Zhao, Lili Yan, Jingwei Xiang, Yang Sun, Yue Zhang, Aying Biology (Basel) Article SIMPLE SUMMARY: Current knowledge about the downstream substrate proteins of MAPKs is still limited. Our study screened a new WRKY IIa transcription factor as the substrate protein of ZmMPK6, and its phosphorylation at Thr-59 is critical to the role of ZmWRKY104 in ABA-induced antioxidant defense. Moreover, overexpression ZmWRKY104 in maize enhances the drought tolerance of transgenic plants. These findings define a mechanism for the function of ZmWRKY104 phosphorylated by ZmMPK6 in ABA-induced antioxidant defense and drought tolerance. ABSTRACT: Mitogen-activated protein kinase (MAPK) cascades are primary signaling pathways involved in various signaling pathways triggered by abiotic and biotic stresses in plants. The downstream substrate proteins of MAPKs in maize, however, are still limited. Here, we screened a WRKY IIa transcription factor (TF) in maize (Zea mays L.), ZmWRKY104, and found that it is a substrate of ZmMPK6. ZmWRKY104 physically interacts with ZmMPK6 in vitro and in vivo. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis results showed that threonine-59 (Thr-59, T59) was the major phosphorylation site of ZmWRKY104 by ZmMPK6. Subcellular localization analysis suggested that ZmWRKY104 acts in the nucleus and that ZmMPK6 acts in the nucleus and cytoplasmic membrane in the cytosol. Functional analysis revealed that the role of ZmWRKY104 in ABA-induced antioxidant defense depends on ZmMPK6. Moreover, overexpression of ZmWRKY104 in maize can enhance drought tolerance and relieve drought-induced oxidative damage in transgenic lines. The above results help define the mechanism of the function of ZmWRKY104 phosphorylated by ZmMPK6 in ABA-induced antioxidant defense and drought tolerance in maize. MDPI 2021-09-10 /pmc/articles/PMC8467104/ /pubmed/34571770 http://dx.doi.org/10.3390/biology10090893 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhao, Lili Yan, Jingwei Xiang, Yang Sun, Yue Zhang, Aying ZmWRKY104 Transcription Factor Phosphorylated by ZmMPK6 Functioning in ABA-Induced Antioxidant Defense and Enhance Drought Tolerance in Maize |
title | ZmWRKY104 Transcription Factor Phosphorylated by ZmMPK6 Functioning in ABA-Induced Antioxidant Defense and Enhance Drought Tolerance in Maize |
title_full | ZmWRKY104 Transcription Factor Phosphorylated by ZmMPK6 Functioning in ABA-Induced Antioxidant Defense and Enhance Drought Tolerance in Maize |
title_fullStr | ZmWRKY104 Transcription Factor Phosphorylated by ZmMPK6 Functioning in ABA-Induced Antioxidant Defense and Enhance Drought Tolerance in Maize |
title_full_unstemmed | ZmWRKY104 Transcription Factor Phosphorylated by ZmMPK6 Functioning in ABA-Induced Antioxidant Defense and Enhance Drought Tolerance in Maize |
title_short | ZmWRKY104 Transcription Factor Phosphorylated by ZmMPK6 Functioning in ABA-Induced Antioxidant Defense and Enhance Drought Tolerance in Maize |
title_sort | zmwrky104 transcription factor phosphorylated by zmmpk6 functioning in aba-induced antioxidant defense and enhance drought tolerance in maize |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467104/ https://www.ncbi.nlm.nih.gov/pubmed/34571770 http://dx.doi.org/10.3390/biology10090893 |
work_keys_str_mv | AT zhaolili zmwrky104transcriptionfactorphosphorylatedbyzmmpk6functioninginabainducedantioxidantdefenseandenhancedroughttoleranceinmaize AT yanjingwei zmwrky104transcriptionfactorphosphorylatedbyzmmpk6functioninginabainducedantioxidantdefenseandenhancedroughttoleranceinmaize AT xiangyang zmwrky104transcriptionfactorphosphorylatedbyzmmpk6functioninginabainducedantioxidantdefenseandenhancedroughttoleranceinmaize AT sunyue zmwrky104transcriptionfactorphosphorylatedbyzmmpk6functioninginabainducedantioxidantdefenseandenhancedroughttoleranceinmaize AT zhangaying zmwrky104transcriptionfactorphosphorylatedbyzmmpk6functioninginabainducedantioxidantdefenseandenhancedroughttoleranceinmaize |