Cargando…
Potential of Rule-Based Methods and Deep Learning Architectures for ECG Diagnostics
The main objective of this study is to propose relatively simple techniques for the automatic diagnosis of electrocardiogram (ECG) signals based on a classical rule-based method and a convolutional deep learning architecture. The validation task was performed in the framework of the PhysioNet/Comput...
Autores principales: | Bortolan, Giovanni, Christov, Ivaylo, Simova, Iana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467148/ https://www.ncbi.nlm.nih.gov/pubmed/34574019 http://dx.doi.org/10.3390/diagnostics11091678 |
Ejemplares similares
-
Modifications in Electrocardiographic and Vectordardiographic Morphological Parameters in Elderly Males as Result of Cardiovascular Diseases and Diabetes Mellitus
por: Bortolan, Giovanni, et al.
Publicado: (2022) -
Dataset of manually measured QT intervals in the electrocardiogram
por: Christov, Ivaylo, et al.
Publicado: (2006) -
Personal Verification/Identification via Analysis of the Peripheral ECG Leads: Influence of the Personal Health Status on the Accuracy
por: Jekova, Irena, et al.
Publicado: (2015) -
Atrioventricular Synchronization for Detection of Atrial Fibrillation and Flutter in One to Twelve ECG Leads Using a Dense Neural Network Classifier
por: Jekova, Irena, et al.
Publicado: (2022) -
Patient-Specific Deep Architectural Model for ECG Classification
por: Luo, Kan, et al.
Publicado: (2017)