Cargando…
Usefulness of a Metal Artifact Reduction Algorithm in Digital Tomosynthesis Using a Combination of Hybrid Generative Adversarial Networks
In this study, a novel combination of hybrid generative adversarial networks (GANs) comprising cycle-consistent GAN, pix2pix, and (mask pyramid network) MPN (CGpM-metal artifact reduction [MAR]), was developed using projection data to reduce metal artifacts and the radiation dose during digital tomo...
Autores principales: | Gomi, Tsutomu, Sakai, Rina, Hara, Hidetake, Watanabe, Yusuke, Mizukami, Shinya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467368/ https://www.ncbi.nlm.nih.gov/pubmed/34573971 http://dx.doi.org/10.3390/diagnostics11091629 |
Ejemplares similares
-
Development of a denoising convolutional neural network-based algorithm for metal artifact reduction in digital tomosynthesis for arthroplasty: A phantom study
por: Gomi, Tsutomu, et al.
Publicado: (2019) -
Improved digital chest tomosynthesis image quality by use of a projection-based dual-energy virtual monochromatic convolutional neural network with super resolution
por: Gomi, Tsutomu, et al.
Publicado: (2020) -
Evaluation of a Generative Adversarial Network to Improve Image Quality and Reduce Radiation-Dose during Digital Breast Tomosynthesis
por: Gomi, Tsutomu, et al.
Publicado: (2022) -
Use of a Total Variation Minimization Iterative Reconstruction Algorithm to Evaluate Reduced Projections during Digital Breast Tomosynthesis
por: Gomi, Tsutomu, et al.
Publicado: (2018) -
X-ray Digital Linear Tomosynthesis Imaging for Artificial Pulmonary Nodule Detection
por: Gomi, Tsutomu
Publicado: (2011)