Cargando…

The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients

Thalassemia and iron deficiency are the most common etiologies for microcytic anemia and there are indices discriminating both from common laboratory simple automatic counters. In this study a new classifier for discriminating thalassemia and non-thalassemia microcytic anemia was generated via combi...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Yi-Kai, Liu, Hsueng-Mei, Lee, Li-Hsuan, Chen, Ying-Ju, Chien, Sheng-Hsuan, Lin, Jeong-Shi, Chen, Wen-Chun, Cheng, Ming-Hsuan, Lin, Po-Heng, Lai, Jheng-You, Chen, Chyong-Mei, Liu, Chun-Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467438/
https://www.ncbi.nlm.nih.gov/pubmed/34574066
http://dx.doi.org/10.3390/diagnostics11091725
_version_ 1784573397648277504
author Fu, Yi-Kai
Liu, Hsueng-Mei
Lee, Li-Hsuan
Chen, Ying-Ju
Chien, Sheng-Hsuan
Lin, Jeong-Shi
Chen, Wen-Chun
Cheng, Ming-Hsuan
Lin, Po-Heng
Lai, Jheng-You
Chen, Chyong-Mei
Liu, Chun-Yu
author_facet Fu, Yi-Kai
Liu, Hsueng-Mei
Lee, Li-Hsuan
Chen, Ying-Ju
Chien, Sheng-Hsuan
Lin, Jeong-Shi
Chen, Wen-Chun
Cheng, Ming-Hsuan
Lin, Po-Heng
Lai, Jheng-You
Chen, Chyong-Mei
Liu, Chun-Yu
author_sort Fu, Yi-Kai
collection PubMed
description Thalassemia and iron deficiency are the most common etiologies for microcytic anemia and there are indices discriminating both from common laboratory simple automatic counters. In this study a new classifier for discriminating thalassemia and non-thalassemia microcytic anemia was generated via combination of exciting indices with machine-learning techniques. A total of 350 Taiwanese adult patients whose anemia diagnosis, complete blood cell counts, and hemoglobin gene profiles were retrospectively reviewed. Thirteen prior established indices were applied to current cohort and the sensitivity, specificity, positive and negative predictive values were calculated. A support vector machine (SVM) with Monte-Carlo cross-validation procedure was adopted to generate the classifier. The performance of our classifier was compared with original indices by calculating the average classification error rate and area under the curve (AUC) for the sampled datasets. The performance of this SVM model showed average AUC of 0.76 and average error rate of 0.26, which surpassed all other indices. In conclusion, we developed a convenient tool for primary-care physicians when deferential diagnosis contains thalassemia for the Taiwanese adult population. This approach needs to be validated in other studies or bigger database.
format Online
Article
Text
id pubmed-8467438
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84674382021-09-27 The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients Fu, Yi-Kai Liu, Hsueng-Mei Lee, Li-Hsuan Chen, Ying-Ju Chien, Sheng-Hsuan Lin, Jeong-Shi Chen, Wen-Chun Cheng, Ming-Hsuan Lin, Po-Heng Lai, Jheng-You Chen, Chyong-Mei Liu, Chun-Yu Diagnostics (Basel) Article Thalassemia and iron deficiency are the most common etiologies for microcytic anemia and there are indices discriminating both from common laboratory simple automatic counters. In this study a new classifier for discriminating thalassemia and non-thalassemia microcytic anemia was generated via combination of exciting indices with machine-learning techniques. A total of 350 Taiwanese adult patients whose anemia diagnosis, complete blood cell counts, and hemoglobin gene profiles were retrospectively reviewed. Thirteen prior established indices were applied to current cohort and the sensitivity, specificity, positive and negative predictive values were calculated. A support vector machine (SVM) with Monte-Carlo cross-validation procedure was adopted to generate the classifier. The performance of our classifier was compared with original indices by calculating the average classification error rate and area under the curve (AUC) for the sampled datasets. The performance of this SVM model showed average AUC of 0.76 and average error rate of 0.26, which surpassed all other indices. In conclusion, we developed a convenient tool for primary-care physicians when deferential diagnosis contains thalassemia for the Taiwanese adult population. This approach needs to be validated in other studies or bigger database. MDPI 2021-09-20 /pmc/articles/PMC8467438/ /pubmed/34574066 http://dx.doi.org/10.3390/diagnostics11091725 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fu, Yi-Kai
Liu, Hsueng-Mei
Lee, Li-Hsuan
Chen, Ying-Ju
Chien, Sheng-Hsuan
Lin, Jeong-Shi
Chen, Wen-Chun
Cheng, Ming-Hsuan
Lin, Po-Heng
Lai, Jheng-You
Chen, Chyong-Mei
Liu, Chun-Yu
The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients
title The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients
title_full The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients
title_fullStr The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients
title_full_unstemmed The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients
title_short The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients
title_sort tvgh-nycu thal-classifier: development of a machine-learning classifier for differentiating thalassemia and non-thalassemia patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467438/
https://www.ncbi.nlm.nih.gov/pubmed/34574066
http://dx.doi.org/10.3390/diagnostics11091725
work_keys_str_mv AT fuyikai thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT liuhsuengmei thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT leelihsuan thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT chenyingju thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT chienshenghsuan thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT linjeongshi thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT chenwenchun thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT chengminghsuan thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT linpoheng thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT laijhengyou thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT chenchyongmei thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT liuchunyu thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT fuyikai tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT liuhsuengmei tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT leelihsuan tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT chenyingju tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT chienshenghsuan tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT linjeongshi tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT chenwenchun tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT chengminghsuan tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT linpoheng tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT laijhengyou tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT chenchyongmei tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients
AT liuchunyu tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients