Cargando…
The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients
Thalassemia and iron deficiency are the most common etiologies for microcytic anemia and there are indices discriminating both from common laboratory simple automatic counters. In this study a new classifier for discriminating thalassemia and non-thalassemia microcytic anemia was generated via combi...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467438/ https://www.ncbi.nlm.nih.gov/pubmed/34574066 http://dx.doi.org/10.3390/diagnostics11091725 |
_version_ | 1784573397648277504 |
---|---|
author | Fu, Yi-Kai Liu, Hsueng-Mei Lee, Li-Hsuan Chen, Ying-Ju Chien, Sheng-Hsuan Lin, Jeong-Shi Chen, Wen-Chun Cheng, Ming-Hsuan Lin, Po-Heng Lai, Jheng-You Chen, Chyong-Mei Liu, Chun-Yu |
author_facet | Fu, Yi-Kai Liu, Hsueng-Mei Lee, Li-Hsuan Chen, Ying-Ju Chien, Sheng-Hsuan Lin, Jeong-Shi Chen, Wen-Chun Cheng, Ming-Hsuan Lin, Po-Heng Lai, Jheng-You Chen, Chyong-Mei Liu, Chun-Yu |
author_sort | Fu, Yi-Kai |
collection | PubMed |
description | Thalassemia and iron deficiency are the most common etiologies for microcytic anemia and there are indices discriminating both from common laboratory simple automatic counters. In this study a new classifier for discriminating thalassemia and non-thalassemia microcytic anemia was generated via combination of exciting indices with machine-learning techniques. A total of 350 Taiwanese adult patients whose anemia diagnosis, complete blood cell counts, and hemoglobin gene profiles were retrospectively reviewed. Thirteen prior established indices were applied to current cohort and the sensitivity, specificity, positive and negative predictive values were calculated. A support vector machine (SVM) with Monte-Carlo cross-validation procedure was adopted to generate the classifier. The performance of our classifier was compared with original indices by calculating the average classification error rate and area under the curve (AUC) for the sampled datasets. The performance of this SVM model showed average AUC of 0.76 and average error rate of 0.26, which surpassed all other indices. In conclusion, we developed a convenient tool for primary-care physicians when deferential diagnosis contains thalassemia for the Taiwanese adult population. This approach needs to be validated in other studies or bigger database. |
format | Online Article Text |
id | pubmed-8467438 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84674382021-09-27 The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients Fu, Yi-Kai Liu, Hsueng-Mei Lee, Li-Hsuan Chen, Ying-Ju Chien, Sheng-Hsuan Lin, Jeong-Shi Chen, Wen-Chun Cheng, Ming-Hsuan Lin, Po-Heng Lai, Jheng-You Chen, Chyong-Mei Liu, Chun-Yu Diagnostics (Basel) Article Thalassemia and iron deficiency are the most common etiologies for microcytic anemia and there are indices discriminating both from common laboratory simple automatic counters. In this study a new classifier for discriminating thalassemia and non-thalassemia microcytic anemia was generated via combination of exciting indices with machine-learning techniques. A total of 350 Taiwanese adult patients whose anemia diagnosis, complete blood cell counts, and hemoglobin gene profiles were retrospectively reviewed. Thirteen prior established indices were applied to current cohort and the sensitivity, specificity, positive and negative predictive values were calculated. A support vector machine (SVM) with Monte-Carlo cross-validation procedure was adopted to generate the classifier. The performance of our classifier was compared with original indices by calculating the average classification error rate and area under the curve (AUC) for the sampled datasets. The performance of this SVM model showed average AUC of 0.76 and average error rate of 0.26, which surpassed all other indices. In conclusion, we developed a convenient tool for primary-care physicians when deferential diagnosis contains thalassemia for the Taiwanese adult population. This approach needs to be validated in other studies or bigger database. MDPI 2021-09-20 /pmc/articles/PMC8467438/ /pubmed/34574066 http://dx.doi.org/10.3390/diagnostics11091725 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fu, Yi-Kai Liu, Hsueng-Mei Lee, Li-Hsuan Chen, Ying-Ju Chien, Sheng-Hsuan Lin, Jeong-Shi Chen, Wen-Chun Cheng, Ming-Hsuan Lin, Po-Heng Lai, Jheng-You Chen, Chyong-Mei Liu, Chun-Yu The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients |
title | The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients |
title_full | The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients |
title_fullStr | The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients |
title_full_unstemmed | The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients |
title_short | The TVGH-NYCU Thal-Classifier: Development of a Machine-Learning Classifier for Differentiating Thalassemia and Non-Thalassemia Patients |
title_sort | tvgh-nycu thal-classifier: development of a machine-learning classifier for differentiating thalassemia and non-thalassemia patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467438/ https://www.ncbi.nlm.nih.gov/pubmed/34574066 http://dx.doi.org/10.3390/diagnostics11091725 |
work_keys_str_mv | AT fuyikai thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT liuhsuengmei thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT leelihsuan thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT chenyingju thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT chienshenghsuan thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT linjeongshi thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT chenwenchun thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT chengminghsuan thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT linpoheng thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT laijhengyou thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT chenchyongmei thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT liuchunyu thetvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT fuyikai tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT liuhsuengmei tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT leelihsuan tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT chenyingju tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT chienshenghsuan tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT linjeongshi tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT chenwenchun tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT chengminghsuan tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT linpoheng tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT laijhengyou tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT chenchyongmei tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients AT liuchunyu tvghnycuthalclassifierdevelopmentofamachinelearningclassifierfordifferentiatingthalassemiaandnonthalassemiapatients |