Cargando…
Identifying Lung Cancer Cell Markers with Machine Learning Methods and Single-Cell RNA-Seq Data
Non-small cell lung cancer is a major lethal subtype of epithelial lung cancer, with high morbidity and mortality. The single-cell sequencing technique plays a key role in exploring the pathogenesis of non-small cell lung cancer. We proposed a computational method for distinguishing cell subtypes fr...
Autores principales: | Huang, Guo-Hua, Zhang, Yu-Hang, Chen, Lei, Li, You, Huang, Tao, Cai, Yu-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467493/ https://www.ncbi.nlm.nih.gov/pubmed/34575089 http://dx.doi.org/10.3390/life11090940 |
Ejemplares similares
-
Identifying In Vitro Cultured Human Hepatocytes Markers with Machine Learning Methods Based on Single-Cell RNA-Seq Data
por: Li, ZhanDong, et al.
Publicado: (2022) -
Identification of Human Cell Cycle Phase Markers Based on Single-Cell RNA-Seq Data by Using Machine Learning Methods
por: Huang, FeiMing, et al.
Publicado: (2022) -
Identification of cortical interneuron cell markers in mouse embryos based on machine learning analysis of single-cell transcriptomics
por: Li, Zhandong, et al.
Publicado: (2022) -
Identifying COVID-19-Specific Transcriptomic Biomarkers with Machine Learning Methods
por: Chen, Lei, et al.
Publicado: (2021) -
Recognition of Immune Cell Markers of COVID-19 Severity with Machine Learning Methods
por: Chen, Lei, et al.
Publicado: (2022)