Cargando…

Ground Truth Data Generator for Eye Location on Infrared Driver Recordings

Labeling is a very costly and time consuming process that aims to generate datasets for training neural networks in several functionalities and projects. In the automotive field of driver monitoring it has a huge impact, where much of the budget is used for image labeling. This paper presents an alg...

Descripción completa

Detalles Bibliográficos
Autores principales: Valcan, Sorin, Gaianu, Mihail
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467612/
https://www.ncbi.nlm.nih.gov/pubmed/34460798
http://dx.doi.org/10.3390/jimaging7090162
Descripción
Sumario:Labeling is a very costly and time consuming process that aims to generate datasets for training neural networks in several functionalities and projects. In the automotive field of driver monitoring it has a huge impact, where much of the budget is used for image labeling. This paper presents an algorithm that will be used for generating ground truth data for 2D eye location in infrared images of drivers. The algorithm is implemented with many detection restrictions, which makes it very accurate but not necessarily very constant. The resulting dataset shall not be modified by any human factor and will be used to train neural networks, which we expect to have a very good accuracy and a much better consistency for eye detection than the initial algorithm. This paper proves that we can automatically generate very good quality ground truth data for training neural networks, which is still an open topic in the automotive industry.