Cargando…
Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging
Short tau inversion recovery (STIR) sequences are frequently used in magnetic resonance imaging (MRI) of the spine. However, STIR sequences require a significant amount of scanning time. The purpose of the present study was to generate virtual STIR (vSTIR) images from non-contrast, non-fat-suppresse...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467788/ https://www.ncbi.nlm.nih.gov/pubmed/34573884 http://dx.doi.org/10.3390/diagnostics11091542 |
_version_ | 1784573488790503424 |
---|---|
author | Haubold, Johannes Demircioglu, Aydin Theysohn, Jens Matthias Wetter, Axel Radbruch, Alexander Dörner, Nils Schlosser, Thomas Wilfried Deuschl, Cornelius Li, Yan Nassenstein, Kai Schaarschmidt, Benedikt Michael Forsting, Michael Umutlu, Lale Nensa, Felix |
author_facet | Haubold, Johannes Demircioglu, Aydin Theysohn, Jens Matthias Wetter, Axel Radbruch, Alexander Dörner, Nils Schlosser, Thomas Wilfried Deuschl, Cornelius Li, Yan Nassenstein, Kai Schaarschmidt, Benedikt Michael Forsting, Michael Umutlu, Lale Nensa, Felix |
author_sort | Haubold, Johannes |
collection | PubMed |
description | Short tau inversion recovery (STIR) sequences are frequently used in magnetic resonance imaging (MRI) of the spine. However, STIR sequences require a significant amount of scanning time. The purpose of the present study was to generate virtual STIR (vSTIR) images from non-contrast, non-fat-suppressed T1- and T2-weighted images using a conditional generative adversarial network (cGAN). The training dataset comprised 612 studies from 514 patients, and the validation dataset comprised 141 studies from 133 patients. For validation, 100 original STIR and respective vSTIR series were presented to six senior radiologists (blinded for the STIR type) in independent A/B-testing sessions. Additionally, for 141 real or vSTIR sequences, the testers were required to produce a structured report of 15 different findings. In the A/B-test, most testers could not reliably identify the real STIR (mean error of tester 1–6: 41%; 44%; 58%; 48%; 39%; 45%). In the evaluation of the structured reports, vSTIR was equivalent to real STIR in 13 of 15 categories. In the category of the number of STIR hyperintense vertebral bodies (p = 0.08) and in the diagnosis of bone metastases (p = 0.055), the vSTIR was only slightly insignificantly equivalent. By virtually generating STIR images of diagnostic quality from T1- and T2-weighted images using a cGAN, one can shorten examination times and increase throughput. |
format | Online Article Text |
id | pubmed-8467788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84677882021-09-27 Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging Haubold, Johannes Demircioglu, Aydin Theysohn, Jens Matthias Wetter, Axel Radbruch, Alexander Dörner, Nils Schlosser, Thomas Wilfried Deuschl, Cornelius Li, Yan Nassenstein, Kai Schaarschmidt, Benedikt Michael Forsting, Michael Umutlu, Lale Nensa, Felix Diagnostics (Basel) Article Short tau inversion recovery (STIR) sequences are frequently used in magnetic resonance imaging (MRI) of the spine. However, STIR sequences require a significant amount of scanning time. The purpose of the present study was to generate virtual STIR (vSTIR) images from non-contrast, non-fat-suppressed T1- and T2-weighted images using a conditional generative adversarial network (cGAN). The training dataset comprised 612 studies from 514 patients, and the validation dataset comprised 141 studies from 133 patients. For validation, 100 original STIR and respective vSTIR series were presented to six senior radiologists (blinded for the STIR type) in independent A/B-testing sessions. Additionally, for 141 real or vSTIR sequences, the testers were required to produce a structured report of 15 different findings. In the A/B-test, most testers could not reliably identify the real STIR (mean error of tester 1–6: 41%; 44%; 58%; 48%; 39%; 45%). In the evaluation of the structured reports, vSTIR was equivalent to real STIR in 13 of 15 categories. In the category of the number of STIR hyperintense vertebral bodies (p = 0.08) and in the diagnosis of bone metastases (p = 0.055), the vSTIR was only slightly insignificantly equivalent. By virtually generating STIR images of diagnostic quality from T1- and T2-weighted images using a cGAN, one can shorten examination times and increase throughput. MDPI 2021-08-25 /pmc/articles/PMC8467788/ /pubmed/34573884 http://dx.doi.org/10.3390/diagnostics11091542 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Haubold, Johannes Demircioglu, Aydin Theysohn, Jens Matthias Wetter, Axel Radbruch, Alexander Dörner, Nils Schlosser, Thomas Wilfried Deuschl, Cornelius Li, Yan Nassenstein, Kai Schaarschmidt, Benedikt Michael Forsting, Michael Umutlu, Lale Nensa, Felix Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging |
title | Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging |
title_full | Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging |
title_fullStr | Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging |
title_full_unstemmed | Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging |
title_short | Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging |
title_sort | generating virtual short tau inversion recovery (stir) images from t1- and t2-weighted images using a conditional generative adversarial network in spine imaging |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467788/ https://www.ncbi.nlm.nih.gov/pubmed/34573884 http://dx.doi.org/10.3390/diagnostics11091542 |
work_keys_str_mv | AT hauboldjohannes generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging AT demirciogluaydin generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging AT theysohnjensmatthias generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging AT wetteraxel generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging AT radbruchalexander generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging AT dornernils generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging AT schlosserthomaswilfried generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging AT deuschlcornelius generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging AT liyan generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging AT nassensteinkai generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging AT schaarschmidtbenediktmichael generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging AT forstingmichael generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging AT umutlulale generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging AT nensafelix generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging |