Cargando…

Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging

Short tau inversion recovery (STIR) sequences are frequently used in magnetic resonance imaging (MRI) of the spine. However, STIR sequences require a significant amount of scanning time. The purpose of the present study was to generate virtual STIR (vSTIR) images from non-contrast, non-fat-suppresse...

Descripción completa

Detalles Bibliográficos
Autores principales: Haubold, Johannes, Demircioglu, Aydin, Theysohn, Jens Matthias, Wetter, Axel, Radbruch, Alexander, Dörner, Nils, Schlosser, Thomas Wilfried, Deuschl, Cornelius, Li, Yan, Nassenstein, Kai, Schaarschmidt, Benedikt Michael, Forsting, Michael, Umutlu, Lale, Nensa, Felix
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467788/
https://www.ncbi.nlm.nih.gov/pubmed/34573884
http://dx.doi.org/10.3390/diagnostics11091542
_version_ 1784573488790503424
author Haubold, Johannes
Demircioglu, Aydin
Theysohn, Jens Matthias
Wetter, Axel
Radbruch, Alexander
Dörner, Nils
Schlosser, Thomas Wilfried
Deuschl, Cornelius
Li, Yan
Nassenstein, Kai
Schaarschmidt, Benedikt Michael
Forsting, Michael
Umutlu, Lale
Nensa, Felix
author_facet Haubold, Johannes
Demircioglu, Aydin
Theysohn, Jens Matthias
Wetter, Axel
Radbruch, Alexander
Dörner, Nils
Schlosser, Thomas Wilfried
Deuschl, Cornelius
Li, Yan
Nassenstein, Kai
Schaarschmidt, Benedikt Michael
Forsting, Michael
Umutlu, Lale
Nensa, Felix
author_sort Haubold, Johannes
collection PubMed
description Short tau inversion recovery (STIR) sequences are frequently used in magnetic resonance imaging (MRI) of the spine. However, STIR sequences require a significant amount of scanning time. The purpose of the present study was to generate virtual STIR (vSTIR) images from non-contrast, non-fat-suppressed T1- and T2-weighted images using a conditional generative adversarial network (cGAN). The training dataset comprised 612 studies from 514 patients, and the validation dataset comprised 141 studies from 133 patients. For validation, 100 original STIR and respective vSTIR series were presented to six senior radiologists (blinded for the STIR type) in independent A/B-testing sessions. Additionally, for 141 real or vSTIR sequences, the testers were required to produce a structured report of 15 different findings. In the A/B-test, most testers could not reliably identify the real STIR (mean error of tester 1–6: 41%; 44%; 58%; 48%; 39%; 45%). In the evaluation of the structured reports, vSTIR was equivalent to real STIR in 13 of 15 categories. In the category of the number of STIR hyperintense vertebral bodies (p = 0.08) and in the diagnosis of bone metastases (p = 0.055), the vSTIR was only slightly insignificantly equivalent. By virtually generating STIR images of diagnostic quality from T1- and T2-weighted images using a cGAN, one can shorten examination times and increase throughput.
format Online
Article
Text
id pubmed-8467788
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84677882021-09-27 Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging Haubold, Johannes Demircioglu, Aydin Theysohn, Jens Matthias Wetter, Axel Radbruch, Alexander Dörner, Nils Schlosser, Thomas Wilfried Deuschl, Cornelius Li, Yan Nassenstein, Kai Schaarschmidt, Benedikt Michael Forsting, Michael Umutlu, Lale Nensa, Felix Diagnostics (Basel) Article Short tau inversion recovery (STIR) sequences are frequently used in magnetic resonance imaging (MRI) of the spine. However, STIR sequences require a significant amount of scanning time. The purpose of the present study was to generate virtual STIR (vSTIR) images from non-contrast, non-fat-suppressed T1- and T2-weighted images using a conditional generative adversarial network (cGAN). The training dataset comprised 612 studies from 514 patients, and the validation dataset comprised 141 studies from 133 patients. For validation, 100 original STIR and respective vSTIR series were presented to six senior radiologists (blinded for the STIR type) in independent A/B-testing sessions. Additionally, for 141 real or vSTIR sequences, the testers were required to produce a structured report of 15 different findings. In the A/B-test, most testers could not reliably identify the real STIR (mean error of tester 1–6: 41%; 44%; 58%; 48%; 39%; 45%). In the evaluation of the structured reports, vSTIR was equivalent to real STIR in 13 of 15 categories. In the category of the number of STIR hyperintense vertebral bodies (p = 0.08) and in the diagnosis of bone metastases (p = 0.055), the vSTIR was only slightly insignificantly equivalent. By virtually generating STIR images of diagnostic quality from T1- and T2-weighted images using a cGAN, one can shorten examination times and increase throughput. MDPI 2021-08-25 /pmc/articles/PMC8467788/ /pubmed/34573884 http://dx.doi.org/10.3390/diagnostics11091542 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Haubold, Johannes
Demircioglu, Aydin
Theysohn, Jens Matthias
Wetter, Axel
Radbruch, Alexander
Dörner, Nils
Schlosser, Thomas Wilfried
Deuschl, Cornelius
Li, Yan
Nassenstein, Kai
Schaarschmidt, Benedikt Michael
Forsting, Michael
Umutlu, Lale
Nensa, Felix
Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging
title Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging
title_full Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging
title_fullStr Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging
title_full_unstemmed Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging
title_short Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging
title_sort generating virtual short tau inversion recovery (stir) images from t1- and t2-weighted images using a conditional generative adversarial network in spine imaging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467788/
https://www.ncbi.nlm.nih.gov/pubmed/34573884
http://dx.doi.org/10.3390/diagnostics11091542
work_keys_str_mv AT hauboldjohannes generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging
AT demirciogluaydin generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging
AT theysohnjensmatthias generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging
AT wetteraxel generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging
AT radbruchalexander generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging
AT dornernils generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging
AT schlosserthomaswilfried generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging
AT deuschlcornelius generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging
AT liyan generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging
AT nassensteinkai generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging
AT schaarschmidtbenediktmichael generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging
AT forstingmichael generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging
AT umutlulale generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging
AT nensafelix generatingvirtualshorttauinversionrecoverystirimagesfromt1andt2weightedimagesusingaconditionalgenerativeadversarialnetworkinspineimaging