Cargando…
Automatic Sleep-Arousal Detection with Single-Lead EEG Using Stacking Ensemble Learning
Poor-quality sleep substantially diminishes the overall quality of life. It has been shown that sleep arousal serves as a good indicator for scoring sleep quality. However, patients are conventionally asked to perform overnight polysomnography tests to collect their physiological data, which are use...
Autores principales: | Chien, Ying-Ren, Wu, Cheng-Hsuan, Tsao, Hen-Wai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467870/ https://www.ncbi.nlm.nih.gov/pubmed/34577255 http://dx.doi.org/10.3390/s21186049 |
Ejemplares similares
-
Validation of an Automatic Arousal Detection Algorithm for Whole-Night Sleep EEG Recordings
por: Chylinski, Daphne, et al.
Publicado: (2020) -
Deep convolutional architecture‐based hybrid learning for sleep arousal events detection through single‐lead EEG signals
por: Foroughi, Andia, et al.
Publicado: (2023) -
Automatic detection of abnormal EEG signals using multiscale features with ensemble learning
por: Wu, Tao, et al.
Publicado: (2022) -
EEG-Based Emotion Classification Using Stacking Ensemble Approach
por: Chatterjee, Subhajit, et al.
Publicado: (2022) -
An R package for ensemble learning stacking
por: Nukui, Taichi, et al.
Publicado: (2023)