Cargando…
On the Entropy of a One-Dimensional Gas with and without Mixing Using Sinai Billiard
A one-dimensional gas comprising N point particles undergoing elastic collisions within a finite space described by a Sinai billiard generating identical dynamical trajectories are calculated and analyzed with regard to strict extensivity of the entropy definitions of Boltzmann–Gibbs. Due to the col...
Autores principales: | Sobol, Alexander, Güntert, Peter, Riek, Roland |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467902/ https://www.ncbi.nlm.nih.gov/pubmed/34573813 http://dx.doi.org/10.3390/e23091188 |
Ejemplares similares
-
Invariant manifolds, entropy and billiards; smooth maps with singularities
por: Katok, Anatole, et al.
Publicado: (1986) -
An Upper Bound on Topological Entropy of the Bunimovich Stadium Billiard Map
por: Činč, Jernej, et al.
Publicado: (2023) -
Ordinal Pattern Based Entropies and the Kolmogorov–Sinai Entropy: An Update
por: Gutjahr, Tim, et al.
Publicado: (2020) -
Geometry and billiards
por: Tabachnikov, Serge
Publicado: (2005) -
Kolmogorov-Sinai entropy of a generalized Markov shift
por: Werner, I
Publicado: (2005)