Cargando…

NetCom: A Network-Based Tool for Predicting Metabolic Activities of Microbial Communities Based on Interpretation of Metagenomics Data

The study of microbial activity can be viewed as a triangle with three sides: environment (dominant resources in a specific habitat), community (species dictating a repertoire of metabolic conversions) and function (production and/or utilization of resources and compounds). Advances in metagenomics...

Descripción completa

Detalles Bibliográficos
Autores principales: Tal, Ofir, Bartuv, Rotem, Vetcos, Maria, Medina, Shlomit, Jiang, Jiandong, Freilich, Shiri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468097/
https://www.ncbi.nlm.nih.gov/pubmed/34576734
http://dx.doi.org/10.3390/microorganisms9091838
Descripción
Sumario:The study of microbial activity can be viewed as a triangle with three sides: environment (dominant resources in a specific habitat), community (species dictating a repertoire of metabolic conversions) and function (production and/or utilization of resources and compounds). Advances in metagenomics enable a high-resolution description of complex microbial communities in their natural environments and support a systematic study of environment-community-function associations. NetCom is a web-tool for predicting metabolic activities of microbial communities based on network-based interpretation of assembled and annotated metagenomics data. The algorithm takes as an input, lists of differentially abundant enzymatic reactions and generates the following outputs: (i) pathway associations of differently abundant enzymes; (ii) prediction of environmental resources that are unique to each treatment, and their pathway associations; (iii) prediction of compounds that are produced by the microbial community, and pathway association of compounds that are treatment-specific; (iv) network visualization of enzymes, environmental resources and produced compounds, that are treatment specific (2 and 3D). The tool is demonstrated on metagenomic data from rhizosphere and bulk soil samples. By predicting root-specific activities, we illustrate the relevance of our framework for forecasting the impact of soil amendments on the corresponding microbial communities. NetCom is available online.