Cargando…
Machine Learning-Based Definition of Symptom Clusters and Selection of Antidepressants for Depressive Syndrome
The current polythetic and operational criteria for major depression inevitably contribute to the heterogeneity of depressive syndromes. The heterogeneity of depressive syndrome has been criticized using the concept of language game in Wittgensteinian philosophy. Moreover, “a symptom- or endophenoty...
Autores principales: | Kim, Il Bin, Park, Seon-Cheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468112/ https://www.ncbi.nlm.nih.gov/pubmed/34573974 http://dx.doi.org/10.3390/diagnostics11091631 |
Ejemplares similares
-
A Machine-Learning-Algorithm-Based Prediction Model for Psychotic Symptoms in Patients with Depressive Disorder
por: Kim, Kiwon, et al.
Publicado: (2022) -
A Cluster Model of Temperament as an Indicator of Antidepressant Response and Symptom Severity in Major Depression
por: Paavonen, Vesa, et al.
Publicado: (2014) -
How machine-learning recommendations influence clinician treatment selections: the example of antidepressant selection
por: Jacobs, Maia, et al.
Publicado: (2021) -
Neural Circuitry–Neurogenesis Coupling Model of Depression
por: Kim, Il Bin, et al.
Publicado: (2021) -
The Entorhinal Cortex and Adult Neurogenesis in Major Depression
por: Kim, Il Bin, et al.
Publicado: (2021)