Cargando…
Risk Stratification Using (18)F-FDG PET/CT and Artificial Neural Networks in Head and Neck Cancer Patients Undergoing Radiotherapy
This study retrospectively analyzed the performance of artificial neural networks (ANN) to predict overall survival (OS) or locoregional failure (LRF) in HNSCC patients undergoing radiotherapy, based on 2-[(18)F]FDG PET/CT and clinical covariates. We compared predictions relying on three different s...
Autores principales: | Marschner, Sebastian N., Lombardo, Elia, Minibek, Lena, Holzgreve, Adrien, Kaiser, Lena, Albert, Nathalie L., Kurz, Christopher, Riboldi, Marco, Späth, Richard, Baumeister, Philipp, Niyazi, Maximilian, Belka, Claus, Corradini, Stefanie, Landry, Guillaume, Walter, Franziska |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468242/ https://www.ncbi.nlm.nih.gov/pubmed/34573924 http://dx.doi.org/10.3390/diagnostics11091581 |
Ejemplares similares
-
Distant metastasis time to event analysis with CNNs in independent head and neck cancer cohorts
por: Lombardo, Elia, et al.
Publicado: (2021) -
(18)F-FET PET radiomics-based survival prediction in glioblastoma patients receiving radio(chemo)therapy
por: Wiltgen, Tun, et al.
Publicado: (2022) -
Deep learning based automatic segmentation of organs-at-risk for 0.35 T MRgRT of lung tumors
por: Ribeiro, Marvin F., et al.
Publicado: (2023) -
MR-guided radiotherapy in node-positive non-small cell lung cancer and severely limited pulmonary reserve: a report proposing a new clinical pathway for the management of high-risk patients
por: Eze, Chukwuka, et al.
Publicado: (2022) -
Radiotherapy in oncological emergencies: fast-track treatment planning
por: Nierer, Lukas, et al.
Publicado: (2020)