Cargando…
Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins
Dendritic spines are small, bulbous protrusions along neuronal dendrites where most of the excitatory synapses are located. Dendritic spine density in normal human brain increases rapidly before and after birth achieving the highest density around 2–8 years. Density decreases during adolescence, rea...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468246/ https://www.ncbi.nlm.nih.gov/pubmed/34572042 http://dx.doi.org/10.3390/cells10092392 |
_version_ | 1784573616070852608 |
---|---|
author | Khanal, Pushpa Hotulainen, Pirta |
author_facet | Khanal, Pushpa Hotulainen, Pirta |
author_sort | Khanal, Pushpa |
collection | PubMed |
description | Dendritic spines are small, bulbous protrusions along neuronal dendrites where most of the excitatory synapses are located. Dendritic spine density in normal human brain increases rapidly before and after birth achieving the highest density around 2–8 years. Density decreases during adolescence, reaching a stable level in adulthood. The changes in dendritic spines are considered structural correlates for synaptic plasticity as well as the basis of experience-dependent remodeling of neuronal circuits. Alterations in spine density correspond to aberrant brain function observed in various neurodevelopmental and neuropsychiatric disorders. Dendritic spine initiation affects spine density. In this review, we discuss the importance of spine initiation in brain development, learning, and potential complications resulting from altered spine initiation in neurological diseases. Current literature shows that two Bin Amphiphysin Rvs (BAR) domain-containing proteins, MIM/Mtss1 and SrGAP3, are involved in spine initiation. We review existing literature and open databases to discuss whether other BAR-domain proteins could also take part in spine initiation. Finally, we discuss the potential molecular mechanisms on how BAR-domain proteins could regulate spine initiation. |
format | Online Article Text |
id | pubmed-8468246 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84682462021-09-27 Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins Khanal, Pushpa Hotulainen, Pirta Cells Review Dendritic spines are small, bulbous protrusions along neuronal dendrites where most of the excitatory synapses are located. Dendritic spine density in normal human brain increases rapidly before and after birth achieving the highest density around 2–8 years. Density decreases during adolescence, reaching a stable level in adulthood. The changes in dendritic spines are considered structural correlates for synaptic plasticity as well as the basis of experience-dependent remodeling of neuronal circuits. Alterations in spine density correspond to aberrant brain function observed in various neurodevelopmental and neuropsychiatric disorders. Dendritic spine initiation affects spine density. In this review, we discuss the importance of spine initiation in brain development, learning, and potential complications resulting from altered spine initiation in neurological diseases. Current literature shows that two Bin Amphiphysin Rvs (BAR) domain-containing proteins, MIM/Mtss1 and SrGAP3, are involved in spine initiation. We review existing literature and open databases to discuss whether other BAR-domain proteins could also take part in spine initiation. Finally, we discuss the potential molecular mechanisms on how BAR-domain proteins could regulate spine initiation. MDPI 2021-09-12 /pmc/articles/PMC8468246/ /pubmed/34572042 http://dx.doi.org/10.3390/cells10092392 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Khanal, Pushpa Hotulainen, Pirta Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins |
title | Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins |
title_full | Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins |
title_fullStr | Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins |
title_full_unstemmed | Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins |
title_short | Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins |
title_sort | dendritic spine initiation in brain development, learning and diseases and impact of bar-domain proteins |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468246/ https://www.ncbi.nlm.nih.gov/pubmed/34572042 http://dx.doi.org/10.3390/cells10092392 |
work_keys_str_mv | AT khanalpushpa dendriticspineinitiationinbraindevelopmentlearninganddiseasesandimpactofbardomainproteins AT hotulainenpirta dendriticspineinitiationinbraindevelopmentlearninganddiseasesandimpactofbardomainproteins |