Cargando…

Effects of Interval Exercise Training on Serum Biochemistry and Bone Mineral Density in Dogs

SIMPLE SUMMARY: In this study, six male beagle dogs underwent 12 weeks of interval exercise following the Frequency, Intensity, Time/duration, Type, Volume, and Progression (FITT-VP) training principle. The heart rate (HR) response was measured during the entire exercise period, and changes in bone...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Hae Sung, Kim, Jae Hwan, Oh, Hyun Ju, Kim, Jong Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468388/
https://www.ncbi.nlm.nih.gov/pubmed/34573494
http://dx.doi.org/10.3390/ani11092528
Descripción
Sumario:SIMPLE SUMMARY: In this study, six male beagle dogs underwent 12 weeks of interval exercise following the Frequency, Intensity, Time/duration, Type, Volume, and Progression (FITT-VP) training principle. The heart rate (HR) response was measured during the entire exercise period, and changes in bone mineral density (BMD), muscle volume (MV), and hematology and serum biomarkers were evaluated at the pre-exercise training period and post-exercise training period. We showed that exercise training increased BMD in the femur and serum total alkaline phosphatase (TALP), aspartate aminotransferase, and creatine kinase levels. In addition, our data suggest a positive correlation between BMD and TALP, demonstrating that increased TALP might be an important contributing factor for enhancing BMD with physical training in dogs. ABSTRACT: Exercise has been suggested as a powerful intervention for health care and fitness management in humans; however, few studies have demonstrated the benefits of exercise training in dogs. The purpose of this study was to examine the effects of exercise training on heart rate (HR), bone mineral density (BMD), muscle volume (MV), and hematological and serum biomarkers in dogs. Six healthy beagles completed the interval treadmill exercise, developed on the basis of the FITT principle, two times a week for 12 weeks. To evaluate the physiological parameters, the HR values were analyzed using the Polar H10 system during the entire exercise period. At pre-and post-exercise, quantitative computed tomography and hematological and serum biochemical parameters were analyzed. The interval exercise resulted in a normal HR response and no adverse behavioral or physiological effects on the dogs. We showed that exercise improved BMD in the femur (541.6 ± 16.7 vs. 610.2 ± 27.8 HA, p < 0.01) and increased serum total alkaline phosphatase (TALP; 68.6 ± 9.2 vs. 81.3 ± 17.2, p < 0.01), aspartate aminotransferase (23.5 ± 1.0 vs. 33.5 ± 1.6, p < 0.01), and creatine kinase (114.8 ± 5.3 vs. 214.0 ± 20.8, p < 0.01) levels. There was a positive relationship between BMD and TALP (femur: r = 0.760, p = 0.004; vertebrae: r = 0.637; p = 0.025). Our findings suggest that interval exercise training is beneficial to increase BMD in the femur, and an increased TALP level would be a concomitant mechanism for enhancing BMD with exercise in dogs.