Cargando…
The Problem of Fairness in Synthetic Healthcare Data
Access to healthcare data such as electronic health records (EHR) is often restricted by laws established to protect patient privacy. These restrictions hinder the reproducibility of existing results based on private healthcare data and also limit new research. Synthetically-generated healthcare dat...
Autores principales: | Bhanot, Karan, Qi, Miao, Erickson, John S., Guyon, Isabelle, Bennett, Kristin P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468495/ https://www.ncbi.nlm.nih.gov/pubmed/34573790 http://dx.doi.org/10.3390/e23091165 |
Ejemplares similares
-
Quantifying representativeness in randomized clinical trials using machine learning fairness metrics
por: Qi, Miao, et al.
Publicado: (2021) -
Global healthcare fairness: We should be sharing more, not less, data
por: Seastedt, Kenneth P., et al.
Publicado: (2022) -
Utilizing data sampling techniques on algorithmic fairness for customer churn prediction with data imbalance problems
por: Maw, Maw, et al.
Publicado: (2022) -
Be FAIR to your data
por: Solle, Dörte
Publicado: (2020) -
Enabling Fairness in Healthcare Through Machine Learning
por: Grote, Thomas, et al.
Publicado: (2022)