Cargando…

On Max-Semistable Laws and Extremes for Dynamical Systems

Suppose [Formula: see text] is a measure preserving dynamical system and [Formula: see text] a measurable observable. Let [Formula: see text] denote the time series of observations on the system, and consider the maxima process [Formula: see text]. Under linear scaling of [Formula: see text] , its a...

Descripción completa

Detalles Bibliográficos
Autores principales: Holland, Mark P., Sterk, Alef E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468561/
https://www.ncbi.nlm.nih.gov/pubmed/34573816
http://dx.doi.org/10.3390/e23091192
Descripción
Sumario:Suppose [Formula: see text] is a measure preserving dynamical system and [Formula: see text] a measurable observable. Let [Formula: see text] denote the time series of observations on the system, and consider the maxima process [Formula: see text]. Under linear scaling of [Formula: see text] , its asymptotic statistics are usually captured by a three-parameter generalised extreme value distribution. This assumes certain regularity conditions on the measure density and the observable. We explore an alternative parametric distribution that can be used to model the extreme behaviour when the observables (or measure density) lack certain regular variation assumptions. The relevant distribution we study arises naturally as the limit for max-semistable processes. For piecewise uniformly expanding dynamical systems, we show that a max-semistable limit holds for the (linear) scaled maxima process.