Cargando…
Using Low-Cost Sensors to Assess Fine Particulate Matter Infiltration (PM(2.5)) during a Wildfire Smoke Episode at a Large Inpatient Healthcare Facility
Wildfire smoke exposure is associated with a range of acute health outcomes, which can be more severe in individuals with underlying health conditions. Currently, there is limited information on the susceptibility of healthcare facilities to smoke infiltration. As part of a larger study to address t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468682/ https://www.ncbi.nlm.nih.gov/pubmed/34574730 http://dx.doi.org/10.3390/ijerph18189811 |
_version_ | 1784573733618319360 |
---|---|
author | Nguyen, Phuong D. M. Martinussen, Nika Mallach, Gary Ebrahimi, Ghazal Jones, Kori Zimmerman, Naomi Henderson, Sarah B. |
author_facet | Nguyen, Phuong D. M. Martinussen, Nika Mallach, Gary Ebrahimi, Ghazal Jones, Kori Zimmerman, Naomi Henderson, Sarah B. |
author_sort | Nguyen, Phuong D. M. |
collection | PubMed |
description | Wildfire smoke exposure is associated with a range of acute health outcomes, which can be more severe in individuals with underlying health conditions. Currently, there is limited information on the susceptibility of healthcare facilities to smoke infiltration. As part of a larger study to address this gap, a rehabilitation facility in Vancouver, Canada was outfitted with one outdoor and seven indoor low-cost fine particulate matter (PM(2.5)) sensors in Air Quality Eggs (EGG) during the summer of 2020. Raw measurements were calibrated using temperature, relative humidity, and dew point derived from the EGG data. The infiltration coefficient was quantified using a distributed lag model. Indoor concentrations during the smoke episode were elevated throughout the building, though non-uniformly. After censoring indoor-only peaks, the average infiltration coefficient (range) during typical days was 0.32 (0.22–0.39), compared with 0.37 (0.31–0.47) during the smoke episode, a 19% increase on average. Indoor PM(2.5) concentrations quickly reflected outdoor conditions during and after the smoke episode. It is unclear whether these results will be generalizable to other years due to COVID-related changes to building operations, but some of the safety protocols may offer valuable lessons for future wildfire seasons. For example, points of building entry and exit were reduced from eight to two during the pandemic, which likely helped to protect the building from wildfire smoke infiltration. Overall, these results demonstrate the utility of indoor low-cost sensors in understanding the impacts of extreme smoke events on facilities where highly susceptible individuals are present. Furthermore, they highlight the need to employ interventions that enhance indoor air quality in such facilities during smoke events. |
format | Online Article Text |
id | pubmed-8468682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84686822021-09-27 Using Low-Cost Sensors to Assess Fine Particulate Matter Infiltration (PM(2.5)) during a Wildfire Smoke Episode at a Large Inpatient Healthcare Facility Nguyen, Phuong D. M. Martinussen, Nika Mallach, Gary Ebrahimi, Ghazal Jones, Kori Zimmerman, Naomi Henderson, Sarah B. Int J Environ Res Public Health Article Wildfire smoke exposure is associated with a range of acute health outcomes, which can be more severe in individuals with underlying health conditions. Currently, there is limited information on the susceptibility of healthcare facilities to smoke infiltration. As part of a larger study to address this gap, a rehabilitation facility in Vancouver, Canada was outfitted with one outdoor and seven indoor low-cost fine particulate matter (PM(2.5)) sensors in Air Quality Eggs (EGG) during the summer of 2020. Raw measurements were calibrated using temperature, relative humidity, and dew point derived from the EGG data. The infiltration coefficient was quantified using a distributed lag model. Indoor concentrations during the smoke episode were elevated throughout the building, though non-uniformly. After censoring indoor-only peaks, the average infiltration coefficient (range) during typical days was 0.32 (0.22–0.39), compared with 0.37 (0.31–0.47) during the smoke episode, a 19% increase on average. Indoor PM(2.5) concentrations quickly reflected outdoor conditions during and after the smoke episode. It is unclear whether these results will be generalizable to other years due to COVID-related changes to building operations, but some of the safety protocols may offer valuable lessons for future wildfire seasons. For example, points of building entry and exit were reduced from eight to two during the pandemic, which likely helped to protect the building from wildfire smoke infiltration. Overall, these results demonstrate the utility of indoor low-cost sensors in understanding the impacts of extreme smoke events on facilities where highly susceptible individuals are present. Furthermore, they highlight the need to employ interventions that enhance indoor air quality in such facilities during smoke events. MDPI 2021-09-17 /pmc/articles/PMC8468682/ /pubmed/34574730 http://dx.doi.org/10.3390/ijerph18189811 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nguyen, Phuong D. M. Martinussen, Nika Mallach, Gary Ebrahimi, Ghazal Jones, Kori Zimmerman, Naomi Henderson, Sarah B. Using Low-Cost Sensors to Assess Fine Particulate Matter Infiltration (PM(2.5)) during a Wildfire Smoke Episode at a Large Inpatient Healthcare Facility |
title | Using Low-Cost Sensors to Assess Fine Particulate Matter Infiltration (PM(2.5)) during a Wildfire Smoke Episode at a Large Inpatient Healthcare Facility |
title_full | Using Low-Cost Sensors to Assess Fine Particulate Matter Infiltration (PM(2.5)) during a Wildfire Smoke Episode at a Large Inpatient Healthcare Facility |
title_fullStr | Using Low-Cost Sensors to Assess Fine Particulate Matter Infiltration (PM(2.5)) during a Wildfire Smoke Episode at a Large Inpatient Healthcare Facility |
title_full_unstemmed | Using Low-Cost Sensors to Assess Fine Particulate Matter Infiltration (PM(2.5)) during a Wildfire Smoke Episode at a Large Inpatient Healthcare Facility |
title_short | Using Low-Cost Sensors to Assess Fine Particulate Matter Infiltration (PM(2.5)) during a Wildfire Smoke Episode at a Large Inpatient Healthcare Facility |
title_sort | using low-cost sensors to assess fine particulate matter infiltration (pm(2.5)) during a wildfire smoke episode at a large inpatient healthcare facility |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468682/ https://www.ncbi.nlm.nih.gov/pubmed/34574730 http://dx.doi.org/10.3390/ijerph18189811 |
work_keys_str_mv | AT nguyenphuongdm usinglowcostsensorstoassessfineparticulatematterinfiltrationpm25duringawildfiresmokeepisodeatalargeinpatienthealthcarefacility AT martinussennika usinglowcostsensorstoassessfineparticulatematterinfiltrationpm25duringawildfiresmokeepisodeatalargeinpatienthealthcarefacility AT mallachgary usinglowcostsensorstoassessfineparticulatematterinfiltrationpm25duringawildfiresmokeepisodeatalargeinpatienthealthcarefacility AT ebrahimighazal usinglowcostsensorstoassessfineparticulatematterinfiltrationpm25duringawildfiresmokeepisodeatalargeinpatienthealthcarefacility AT joneskori usinglowcostsensorstoassessfineparticulatematterinfiltrationpm25duringawildfiresmokeepisodeatalargeinpatienthealthcarefacility AT zimmermannaomi usinglowcostsensorstoassessfineparticulatematterinfiltrationpm25duringawildfiresmokeepisodeatalargeinpatienthealthcarefacility AT hendersonsarahb usinglowcostsensorstoassessfineparticulatematterinfiltrationpm25duringawildfiresmokeepisodeatalargeinpatienthealthcarefacility |