Cargando…
An Automated In-Depth Feature Learning Algorithm for Breast Abnormality Prognosis and Robust Characterization from Mammography Images Using Deep Transfer Learning
SIMPLE SUMMARY: Diagnosing breast cancer masses and calcification clusters is crucial in mammography, which reduces disease consequences and initiates treatment at an early stage. A misinterpretation of mammography may lead to an unneeded biopsy of the false-positive results, decreasing the patient’...
Autores principales: | Mahmood, Tariq, Li, Jianqiang, Pei, Yan, Akhtar, Faheem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468800/ https://www.ncbi.nlm.nih.gov/pubmed/34571736 http://dx.doi.org/10.3390/biology10090859 |
Ejemplares similares
-
Breast lesions classifications of mammographic images using a deep convolutional neural network-based approach
por: Mahmood, Tariq, et al.
Publicado: (2022) -
Deep Learning-Based Artificial Intelligence for Mammography
por: Yoon, Jung Hyun, et al.
Publicado: (2021) -
An Automatic Detection and Localization of Mammographic Microcalcifications ROI with Multi-Scale Features Using the Radiomics Analysis Approach
por: Mahmood, Tariq, et al.
Publicado: (2021) -
Deep features optimization based on a transfer learning, genetic algorithm, and extreme learning machine for robust content-based image retrieval
por: Bibi, Ruqia, et al.
Publicado: (2022) -
Diagnosis of breast cancer based on modern mammography using hybrid transfer learning
por: Khamparia, Aditya, et al.
Publicado: (2021)